
 

January 22, 2024 

 

John J. Ngai, Ph.D.  

Director 

Brain Research Through Advancing Innovative Neurotechnologies Initiative  

National Institutes of Health 

 

Via e-mail: john.ngai@nih.gov  

 

Dear Dr. Ngai: 

 

I’m writing as a neuroscientist and on behalf of People for the Ethical Treatment 

of Animals (PETA) regarding a series of visual deprivation experiments funded 

by the Brain Research Through Advancing Innovative Neurotechnologies 

(BRAIN) Initiative being performed on infant rhesus macaques in a laboratory at 

Harvard Medical School (HMS). The experiments, supported by Project 

R01NS123778 and titled “Effects of abnormal early experience on IT circuitry,” 

are currently receiving $2,039,107 in funding from the BRAIN Initiative. As will 

be reviewed below, these experiments involve performing exceptionally harmful 

procedures on infant rhesus macaques that are not only unethical, but outdated 

and redundant. It is, quite frankly, shocking that these experiments are part of the 

BRAIN Initiative’s efforts towards “revolutionizing our understanding of the 

human brain” with “a common goal of accelerating the development of 

neurotechnologies.” 

 

Irreversible Harms 

The experiments in question, led by Principal Investigator Margaret Livingstone, 

subject newborn rhesus macaques to both maternal and sensory deprivation. 

More specifically, they involve permanently removing infant monkeys from their 

mothers at birth and subjecting them to various sensory visual deprivation 

procedures. These visual deprivation procedures, shockingly, include forcing 

these newborn infants to wear helmets and goggles that create stroboscopic 

effects for the first 18 months of their life. Other visual deprivation procedures in 

this project include raising these maternally-deprived infants with goggles that 

invert their visual input or alternatively occlude their right and left eyes for at 

least their first year of life. After being removed from their mothers and having 

their visual input disrupted, impeded, or warped these monkeys then have their 

entire skulls encased in an acrylic shell so that the experimenters can attach a 

head fixation device and implant electrodes into their brains.  

 

It’s well established that mother-deprived infant monkeys like the ones in this 

laboratory experience both immediate and long-term effects from this 

deprivation. Monkeys separated from their mothers exhibit excessive fearfulness 

and/or aggression,1 produce excess stress hormones,2 display abnormal 
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reproductive behavior, and frequently rank at the bottom of the social-dominance hierarchy.3 

Maternally deprived macaques are more likely to engage in self-injurious behavior,4 exhibit motor 

stereotypies indicative of frustration and stress,5 experience abnormal sleep patterns,6 and demonstrate 

increased startle and stress responses to threatening stimuli,7 and they are more susceptible to 

infection.8 

 

Additionally, maternal deprivation affects brain structure and function. Monkeys “hand-reared” in a 

laboratory setting exhibit altered serotonin pathway function9,10 and cerebral blood flow11 as well as 

altered levels of brain-derived neurotrophic factor and nerve growth factor critical for normal brain 

function.12 Maternal deprivation also has long-term effects on brain morphology,13 including in the 

cortical regions that Livingstone is studying.14 These substantive brain alterations not only reflect the 

atypical development these animals are being forced to experience but also influence the 

generalizability of Livingstone’s own neurological data. As the purported purpose of these experiments 

is to selectively study the impact of visual deprivation on these animals’ cortical and visual processing 

development, ignoring the various neurological effects of the additional maternal deprivation is 

problematic and potentially misleading. 

 

These already emotionally and physically damaged monkeys are then forced to live in what can only 

be described as a visually confusing and terrifying world, with their vision continuously and ultimately 

permanently disrupted. Moreover, these sorts of visual deprivation procedures are known to cause 

permanent retinal damage (including retinal detachment in some species), balance and gait 

abnormalities, in addition to the expected visual deficits and visual system aberrations the 

experimenters are trying to induce. In fact, brief stroboscopic conditions are frequently used as both 

chronic and acute stressors in animals in laboratories due to their long-and short-term effects on the 

animals’ physical and psychological well-being.15,16,17,18 The impact of 18 months of strobe lighting on 

the overall health of these monkeys is likely to be profound, but was not taken into consideration when 

evaluating the harms induced by these experiments against their purported scientific merits.   

 

Unnecessary Harms 

The purported purpose of these experiments is to “explore how specific abnormal early visual 

experience changes neuronal selectivity.” However, these sorts of visual deprivation experiments have 

been performed ad nauseum for the past 50 years in a host of animal species, including goldfish,19 

chickens,20 rats,21,22 songbirds,23 frogs,24 rabbits,25,26,27 guinea pigs,28 cats,29,30,31,32,33 and nonhuman 

primates.34,35,36,37 The only novelty Livingstone is bringing with this 2-million-dollar project is the 

extreme length of time she (and the BRAIN initiative) are willing to subject these monkeys to strobe-, 

prism-, and binocular deprivation-rearing. The fact that to date no one has decided to force infant 

macaques to live under stroboscopic lighting conditions for the first 18 months of their life doesn’t 

make these experiments scientifically innovative, just ethically unprecedented.  

 

There are a multitude of projects using noninvasive methods with humans to study the impact of early 

sensory experience on neural and visual development. For example, research with humans who 

experience early transient congenital blindness,38,39,40,41 amblyopia,42 and visual impairments43 have 

investigated the effects of abnormal early visual experience on the development of vision and other 

senses, eye-tracking behavior, neural reorganization, and domain-specific visual abilities. Researchers 

have also studied the effect of short-term monocular deprivation in human volunteers and its effects on 

binocular rivalry,44 visual evoked potentials,45 and BOLD activity in the visual cortex46 and have 

assessed the neurochemical mechanisms associated with plasticity in the visual cortex.47 In addition to 

being human-relevant, these studies don’t have the numerous confounds of maternal deprivation 

introduced by the experiments performed in Livingstone’s laboratory.  



 

Conclusion 

Given the cruelty inherent in the procedures performed under Project R01NS123778, their complete 

redundancy to the field, and the availability of modern, non-invasive methods, it’s concerning that the 

BRAIN Initiative, which prides itself on the advancement of innovative technologies to revolutionize 

our understanding of the human brain, has invested in these experiments.  

 

Hundreds of scientists have already openly objected to these experiments on both ethical and scientific 

grounds. It is horrifying that they are being allowed to continue because the handful of people 

reviewing this grant found these procedures morally acceptable. They are not. Please discontinue your 

support for this project. I would be happy to meet with you to discuss this important matter. 

 

 

Sincerely,  

 

 
 

Chief Scientist 

Laboratory Investigations Department 
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