
 

November 20, 2023 

 

Kevin Shea 

Administrator 

USDA/APHIS 

 

Axel Wolff, D.V.M., M.S. 

Acting Director 

Office of Laboratory Animal Welfare  

National Institutes of Health 

 

Via e-mail: kevin.a.shea@usda.gov; olaw@mail.nih.gov  

 

Dear Mr. Shea and Dr. Wolff: 

 

People for the Ethical Treatment of Animals (PETA) requests that the U.S. 

Department of Agriculture’s (USDA) Animal and Plant Health Inspection 

Service (APHIS) and the National Institutes of Health’s (NIH) Office of 

Laboratory Animal Welfare (OLAW) investigate possible violations of the 

federal Animal Welfare Act (AWA) and noncompliance with the Public Health 

Service Policy on Care and Use of Laboratory Animals (PHS Policy) related to 

the use and treatment of common marmoset monkeys in neuroendocrine 

experiments. The procedures in question, led by NIH-funded principal 

investigator Agnès Lacreuse and conducted at the University of Massachusetts–

Amherst (UMass; Certificate No. 14-R-0036), involve subjecting marmosets to 

multiple invasive procedures that appear to violate AWA regulations. The 

research objectives could alternatively be addressed ethically and non-invasively 

by using human volunteers and/or other human-relevant approaches.  

 

In response to several Freedom of Information Act requests, PETA received 

more than 15 hours of video footage and hundreds of pages of documents related 

to experiments carried out by Lacreuse on common marmosets. A review of 

these documents, which include copies of grant applications for funded NIH 

projects R01CA246929 and R21AG074251 as well as the associated approved 

protocols from UMass (#70, #764, #2132, and #2376), reveal treatment of 

animals that appears to constitute violations of Animal Welfare Regulations 

(AWR) and noncompliance with PHS Policy.  

 

These apparent violations include the following: 

 

1. Failure on the part of the institutional animal care and use committee 

(IACUC) to ensure that the investigator provide a scientifically valid 

rationale for involving animals and for the appropriateness of the species and 

numbers of animals to be used [9 C.F.R. §2.31(e)(2)]  
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2. Failure on the part of the IACUC to ensure that animals would not be used in more than one 

major operative surgery from which they were allowed to recover [9 C.F.R. §2.31(d)(1)(x)] 

3. Failure to report the use of animals in the appropriate USDA category for pain and distress [9 

C.F.R. §2.36] 

4. Failure on the part of the IACUC to ensure that the principal investigator had considered 

alternatives to procedures that may cause more than momentary or slight pain or distress to the 

animals [9 C.F.R. §2.31(d)(1)(ii)] 

 

PETA believes that the inadequate oversight by the UMass IACUC may have resulted in 

improper approval and ongoing use of live animals in these experiments. 

 

1. Failure to ensure that a proposal to conduct an activity involving animals contains a 

scientifically valid rationale and purpose for procedures that impact the welfare of 

animals  

 

C.F.R. Title 9, Section 2.31(e)(2) of the AWRs requires that a proposal to conduct an activity 

involving animals must contain a “rationale for involving animals, and for the appropriateness of 

the species and numbers of animals to be used.” Similarly, the Guide for the Care and Use of 

Laboratory Animals (the Guide) requires that the IACUC review the proposed “rationale and 

purpose of the proposed use of animals” (p. 25). The Guide also requires that in its review of 

proposed animal use protocols, the IACUC consider, among other things, the “justification of the 

species and number of animals proposed” (p. 25).  

 

The experiments Lacreuse is conducting involve subjecting marmoset monkeys to years of 

captivity, multiple invasive surgeries, hormone manipulation, frequent restraint, fluid restriction, 

fear- and stress-inducing behavioral tests, and frequent social separation. After eight to 10 years of 

experimentation, the animals are perfused and dissected.1,2,3,4 The purported purpose of these 

experiments is to study the role of menopause and its associated disruptions in thermal regulation, 

sleep, and cognitive function in the increased risk for neurodegenerative diseases in women.  

 

However, marmosets are an exceptionally inappropriate species to study for this purpose. Inherent 

differences in sex hormone function, aging, and gene expression between marmosets and humans; 

critical differences in endocrine and neurological processes between the two species; and the 

profound impact of captivity on marmosets’ physiological systems render data from these 

experiments irrelevant to humans. Please consider the following information: 

 

• Common marmosets do not naturally experience menopause. Their estrogen levels do not 

gradually decrease with age. They display no evidence of reproductive senescence or 

hormone-mediated osteoporosis—even when they are well into their more advanced ages of 14 

and 16 years.5 In fact, throughout their lifetimes, marmosets have elevated concentrations of 

plasma estradiol6 and progesterone7 compared to humans and Old World primates. This is true 

for marmosets who are intact and for those whose ovaries have been surgically removed.8 

Additionally, marmosets do not respond to circulating or extraneous hormones in the same 

way as humans and other primates. Compared to humans and other primates, marmosets 

display what is referred to as “generalized steroid hormone resistance,”9 i.e., relatively high 

levels of steroid hormones in circulation and relatively low response to exogenous steroids, 

and they exhibit target-tissue resistance to gonadal steroid hormones.10  

 



• In an attempt to induce menopause in marmosets, the Lacreuse laboratory surgically removes 

their ovaries. However, ovariectomized (OVX) marmosets do not exhibit the changes in 

metabolism, bodyweight, body composition, bone density, energy expenditure, physical 

activity, fasting glucose, or glucose tolerance or the measurable mood changes or cognitive 

impairments seen in peri- or post-menopausal women.11,12 In fact, data obtained from OVX 

marmosets is often in direct contrast with data from human women, for whom surgically 

induced menopause is associated with more severe symptoms and health risks than those 

observed in spontaneous gradual menopause.13 For example, women who have had surgically 

induced menopause are shown to have significantly greater cognitive impairments than those 

who undergo nonsurgical menopause.14,15 The earlier the surgical induction of menopause, the 

more rapid the cognitive decline, the higher the risk of dementia, and the closer to Alzheimer’s 

disease the pathology.16,17 Induced menopause is associated with a higher risk for 

cardiovascular disease,18,19 slower gait speed,20 decreased bone mineral density, and increased 

fracture risk21 compared to natural spontaneous menopause.  

 

• In a recent review of the role of estrogen in cognitive aging, Russell et al. emphasized the 

exact problem with using surgically induced menopause to model perimenopausal cognitive 

impairments: 

 

[O]variectomy models the loss of E2 [estradiol], temporally this is markedly 

different from the changes that occur during natural menopause. In menopause, 

the less abrupt loss of E2 can produce cognitive deficits that continue to 

develop through later life. Furthermore, studies utilizing ovariectomy in young 

animals will produce a preclinical model that is inappropriate to interrogate the 

interaction between decreased estrogen, the aging brain, and cognitive 

dysfunction. The aging brain and associated cognitive dysfunction is 

developing concurrently with the menopausal transition in clinical populations. 

These age-related changes will not be occurring in the preclinical model.22 

 

In other words, in addition to the dramatically different effects experienced by marmosets 

whose ovaries have been removed and women with induced or spontaneous menopause, 

Lacreuse’s experiments forgo the entire “transitional” stage of menopause, which is 

particularly problematic for her cognitive assessments.  

 

• There are fundamental differences in gene expression and protein function in the brains of 

marmosets compared to humans.23 There are differences in neurodevelopment24,25 and 

neuroanatomy,26,27 including in the timing, rate, and patterns of gray- and white-matter 

development across the animal’s lifespan.28,29,30,31,32,33 In marmosets, tau—a protein that makes 

up a major component of the neurofibrillary tangles in Alzheimer’s disease—is actually much 

more similar to the protein found in rodents’ brains than that found in humans.34 Marmoset 

brains are also less sexually dimorphic than those of humans and other primates,35 which will 

likely affect the applicability of any of Lacreuse’s sex-related findings to humans. While 

marmosets exhibit some evidence of cognitive decline with age, they do not develop human-

like Alzheimer’s disease, a condition unique to humans that has never been successfully 

recapitulated in another species.36,37,38,39,40 

 

• Marmosets’ accelerated development makes them an inappropriate choice for studying the 

much more protracted and hormone-sensitive age-related changes in the human brain. In a 



recent (2019) review, biological anthropologist, and experimenter at Yerkes National Primate 

Research Center (now Emory National Primate Research Center) Todd Preuss writes: 

 

The very small size of the marmoset brain makes it very likely that the 

functions of its cortical systems differ in important ways from those of larger-

brained primates, if only because of the much more limited amount of neural 

machinery marmosets and other callitrichines have to work with. … Given the 

small size and rapid development of marmosets, it is tempting to view 

marmoset life history as a condensed version of that of longer-lived primates. 

Yet there is evidence primates vary in patterns of postnatal growth and 

development. Bogin (2007) indicates that cercopithecoid and hominoid 

development includes an extended period of slow growth, defining a juvenile 

stage that has no counterpart in marmosets. This difference, and the 

specializations of human development recognized by Bogin—namely, the 

addition of childhood and adolescent stages—imply differences in the hormonal 

control of development.41 

 

Surgically induced, abrupt menopause in captive marmosets cannot mimic the complex genetic, 

environmental, or epigenetic factors known to influence the natural menopausal transition and its 

associated symptoms in humans and impacts the animals’ well-being by requiring that they endure 

multiple invasive surgeries, hormone restraint, frequent restraint, fluid restriction, years of 

captivity, and eventually death. The IACUC appears to have failed to properly evaluate the 

proposed species to be used as well as the scientific rationale for the use of animals in the various 

components of these experiments relative to the impact that the tests have on the animals’ welfare. 

 

The lack of sound rationales for the use of animals in these experiments should have prevented 

them from being approved.  

 

2. Failure to ensure that animals would not be used in more than one major operative 

survival surgery 

 

Section 2143(a)(3)(D) of the AWA and Section 2.31(d)(1)(x) of the AWRs require that in its 

review of “proposed activities related to the care and use of animals,” the IACUC must ensure that 

“no animal will be used in more than one major operative procedure from which [he or she] is 

allowed to recover” except in cases of “(i) scientific necessity; or (ii) other special circumstances 

as determined by the Secretary.” Neither of these exceptions appear to be present or relevant here, 

as OVX marmosets do not exhibit a drop in estrogen levels similar to humans and the overnight 

recording equipment is surgically attached only for the convenience of the experimenters. 

 

However, marmosets in Lacreuse’s laboratory are subjected to multiple major surgeries. Female 

marmosets used in these experiments endure bilateral ovariohysterectomies, and males endure 

vasectomies and gonadectomies. Many male and female marmosets are then subjected to 

telemetry implantation surgeries so that experimenters can monitor brain activity, heart rate, and 

temperature during sleep and cognitive testing. To implant these devices, experimenters drill burr 

holes into the marmosets’ skulls and screw electrodes directly into the bone.  

 

The approved protocols for this procedure explicitly acknowledge the considerable harm to which 

marmosets are subjected, indicating that the animals may experience “pain … [and] irritation at 



[the] surgery site.” The protocol further states, “Monkey may stop eating, be lethargic, [and] 

scratch at the incision site.”42 

 

It appears that the IACUC improperly approved multiple major surgeries, including reproductive 

surgeries and drilling holes into their skulls, in direct contradiction of Section 2143(a)(3)(D) of 

the AWA and Section 2.31(d)(1)(x) of the AWRs. 

 

3. Failure to report animal use in the appropriate USDA category for pain and distress 

 

Section 2.36(a) and (b)(5–7) of the AWRs stipulates that research facilities must submit an annual 

report to the USDA, stating, “the common names and the numbers of animals upon which 

experiments, teaching, research, surgery, or tests were conducted,” and classifying them under the 

appropriate USDA pain and distress category for the procedures in which the animals were used.  

 

In this series of experiments, only the surgical procedures and perfusion were classified as USDA 

pain and distress category D or as “involving accompanying pain or distress to the animals and for 

which appropriate anesthetic, analgesic, or tranquilizing drugs were used.”43 All other procedures 

approved by the IACUC, including hormone manipulations, restraint, social separation, and fluid 

restriction, were classified as category C, or as “involving no pain, distress, or use of pain-

relieving drugs.” However, the cumulative impact of the chronic captivity, multiple surgeries, 

hormone manipulation, and behavior testing do cause pain and distress to the animals. As shown 

in detail below, Lacreuse’s experiments should be classified as category E, as the animals are 

being “subjected to painful or stressful procedures” that induce permanent physical and 

psychological harm and that are not being “alleviated through the use of anesthetics, analgesics, or 

tranquilizers.”  

 

• Captivity: The current standards for housing and enrichment for the marmosets in the 

Lacreuse laboratory do not meet the animals’ needs to forage, climb, and engage in problem-

solving and complex social interactions.44,45 Marmosets in these experiments are kept caged, 

with no access to the outdoors, for up to 10 years. The lack of adequate mental and social 

stimulation in the laboratory, along with frequent subjection to common laboratory procedures, 

leads to chronic stress that negatively affects primates psychologically and physiologically. 

Primates held captive in laboratories and subjected to experimental procedures exhibit signs of 

extreme distress, including pacing, rocking, head-twisting, and eating their own feces. Highly 

traumatized primates will bite their own flesh, pull out their own hair, and engage in other 

forms of severe self-mutilation.46,47,48,49 Primates in laboratories display aberrant immune-

system functioning, including increased stress-related hormones, dysregulation of the 

hypothalamic-pituitary-adrenal axis, and depressed immune-system functioning.50 Stress-

induced immune dysregulation and systemic inflammation result in significant health 

consequences, including increased vulnerability to infection,51 delayed wound healing and 

recovery from surgery,52 and accelerated aging.53 Captive marmosets are also prone to 

metabolic bone disease,54 which results in bone lesions and fractures and may be the cause of 

the oral disease, including tooth decay, frequently affecting these animals. Experimenters 

currently believe this issue may be related to the higher vitamin D requirements of marmosets, 

differences in vitamin D metabolism in marmosets, or vitamin D deficiency caused by 

complete deprivation of sunlight in laboratory cages.55 Marmosets in laboratories are also 

likely to suffer from secondary systemic amyloidosis56 and insulin resistance.57 



• Marmoset wasting syndrome: Marmosets in laboratories are at high risk of developing a 

condition referred to as “marmoset wasting syndrome” (also called “chronic lymphocytic 

enteritis”), a systemic inflammatory disorder that leads to weight loss, diarrhea, anemia, 

alopecia, weakness, intestinal inflammation, osteoporosis, paralysis, and death.58,59 Efforts to 

curb the profound and deadly weight loss associated with improper nutrition have only caused 

additional health concerns. If they aren’t wasting away, marmosets in laboratories are 

becoming obese and suffering from health complications associated with that condition, 

including altered glucose metabolism, reduced insulin sensitivity, increased risk of heart 

disease and diabetes, and various metabolic dysfunctions.60  

• Fluid restriction: To ensure cooperation on the multitude of cognitive tests the laboratory 

subjects them to, the marmosets in the Lacreuse laboratory are deprived of one of their most 

basic needs—water—for hours on end. Water restriction can cause “decreased skin turgor, dry 

mucous membranes, increased plasma osmolality, and behavior suggestive of extreme thirst or 

hunger. Distressed primates might also show behavioral changes such as lethargy, agitation, or 

altered patterns of aggression,”61 and smaller species of primates “may be especially 

susceptible to dehydration.” 

• Restraint: Marmosets endure frequent restraint for these experiments, including for blood 

draws and neuroimaging while conscious as well as thermal challenges. For awake 

neuroimaging conducted at UMass, marmosets are put into a restraint jacket and zip-tied to a 

head restraint device for up to five hours at a time. Marmosets are sensitive to physical 

restraint, and their response to restraint affects their heart and respiratory rates, temperature, 

and blood pressure.62 

• Letrozole administration: In an attempt to induce human-like menopausal symptoms, the 

experimenters give the marmosets the drug letrozole to lower their estrogen levels even further 

than is caused by surgery. Letrozole is an aromatase inhibitor used to lower non–ovarian 

produced estrogen. Typically used to keep estrogen levels low in post-menopausal women 

with a risk or history of estrogen (E+) sensitive types of breast cancer, the side effects in 

humans include hot flashes, joint pain, dizziness, nausea, weight gain, edema, diarrhea, 

cognitive difficulties, and fatigue.  

 

The extensive catalog of invasive, painful, and distressing procedures conducted on marmosets for 

these experiments and the irreversible harm they induce according to scientific literature clearly 

indicate that they should be classified as category E experiments, reflecting the unrelieved pain 

and distress that can be expected to be experienced by the monkeys over the course of these 

experiments. 

 

4. Failure to consider alternatives to painful procedures  

 

Section 2143(a)(3)(B) of the AWA and Section 2.31(d)(1)(ii) of the AWRs require that in its 

review of “proposed activities related to the care and use of animals,” the IACUC ensure that the 

principal investigator has “considered alternatives to procedures that may cause more than 

momentary or slight pain or distress to the animals.” The Guide also requires that the IACUC 

consider the “availability or appropriateness of the use of less invasive procedures, other species, 

isolated organ preparation, cell or tissue culture, or computer simulation” (p. 12). 

 

However, the animal study proposals for these experiments indicate that the experimenters failed 

to conduct an adequate search for alternative procedures. For the procedures the experimenters 

classified as USDA pain and distress category D, which were the major life surgeries and 



perfusion, the search for alternatives to those procedures was limited to alternatives that would 

still involve performing surgical procedures on nonhuman primates. Non-animal alternatives were 

not considered.63,64 The investigators did not search for alternative approaches to studying 

menopause, hormone levels, and brain structure and function non-invasively with humans or 

human-relevant methods.  

 

Indeed, a review of the literature indicates that this entire battery of tests could have been 

conducted ethically with human volunteers or other human-relevant methods. Please consider the 

following examples:  

 

• In vivo imaging at various stages of the menopausal transition of women who are at risk of 

developing or living with various neurological disorders, 65,66 postmortem analysis of brain 

tissues from patients,67 and large-scale epidemiological studies68,69 are helping researchers 

understand the role of estrogen in various human diseases and types of behavior.70  

• Cutting-edge technology, including pluripotent stem cell models,71,72 three-dimensional cell-

culture models,73,74 and organ-on-a-chip technology,75,76 are being used not only to serve as 

more accurate and detailed models of human neurodegenerative disease but also to test the 

effects of estrogen at the cellular level.77,78 The effects of estrogen on cognition,79,80,81 brain 

structure and function,82,83,84,85 mood,86,87,88 hot flash frequency and severity,89,90 sleep 

disturbances,91,92 and risk for neurodegenerative diseases have all been successfully studied in 

human volunteers. 

• Researchers studying women have investigated whether hormone replacement therapy is 

associated with a lower risk for the amyloid β-deposits associated with Alzheimer’s disease93 

and whether resveratrol, a phytoestrogen available in many foods, can ameliorate symptoms 

associated with menopause.94,95 A recent study of more than 2,500 post-menopausal women 

indicated that the degree of cognitive decline experienced was associated with corresponding 

depressive symptoms.96 

 

Clearly, a multitude of non-animal methods are available for studying the role of menopause and 

hormone levels on aging and neurodegenerative risk. The IACUC apparently failed to ensure that 

the investigator considered available alternatives to procedures that will cause more than 

momentary or slight pain and distress to animals. 

 

5. PHS Policy  

 

The issues described above also appear to violate the PHS Policy’s U.S. Government Principles 

for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training. 97  

 

In particular, Principle II of the PHS Policy states, “Procedures involving animals should be 

designed and performed with due consideration of their relevance to human or animal health, the 

advancement of knowledge, or the good of society.” Principle III maintains that “[t]he animals 

selected for a procedure should be of an appropriate species and quality and the minimum number 

required to obtain valid results. Methods such as mathematical models, computer simulation, and 

in vitro biological systems should be considered.” And Principle IV states, “Proper use of animals, 

including the avoidance or minimization of discomfort, distress, and pain when consistent with 

sound scientific practices, is imperative. Unless the contrary is established, investigators should 

consider that procedures that cause pain or distress in human beings may cause pain or distress in 

other animals” (p. 4). Accordingly, we request that OLAW evaluate these concerns and, if 



corrective measures are not taken, “restrict or withdraw approval of [Animal Welfare] 

Assurances” (p. 24).  

 

The IACUC that approved these procedures apparently failed to consider the lack of relevance of 

these experiments to humans, the inappropriateness of the species, the impact of the procedures 

on the animals, and the availability of non-animal methods when reviewing the proposed animal 

use protocols associated with Lacreuse’s experiments. 

 

Conclusion 

As detailed above, apparent violations of the AWRs and noncompliance with the PHS Policy by 

the UMass IACUC include the following: 

 

1. Approval for Lacreuse to experiment on marmosets, even though marmosets are not the 

appropriate species for the research project, discomfort and pain were avoidable, and the 

rationale for the use of animals was poorly evaluated 

2. Approval for Lacreuse to perform multiple major operative procedures on marmosets 

3. Failure to report the appropriate USDA pain and distress categories 

4. Failure to consider alternatives to procedures that cause more than momentary or slight pain or 

distress to animals 

 

Accordingly, PETA requests that APHIS and OLAW investigate this matter and order corrective 

action and appropriate penalties. 

 

Thank you for your attention to this important matter.  

 

Sincerely, 

 
Katherine V. Roe 

Chief Scientist 

Laboratory Investigations Department 

People for the Ethical Treatment of Animals 

KatherineR@peta.org  
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