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Executive Summary

·Marmoset monkeys in Lacreuse’s laboratory are

subjected to approximately eight years in a cage,

during which they endure multiple major

surgeries, social isolation, sleep deprivation,

fluid deprivation, harmful hormonal

manipulations, and frequent lengthy restraint

before being killed and dissected.

·The interaction between age, hormones,

genetics, reproductive history, general physical

health, and mental health status on menopause-

related symptoms in humans is far too complex

to be “simulated” in a laboratory in nonhuman

primates.

·Marmosets do not experience menopause or

the physiological symptoms it presents in

humans. Menopausal symptoms are induced in

this laboratory through surgeries,

pharmaceutical interventions, applications of

heating pads, and noise-induced sleep

deprivation.

·Critical differences between humans and

marmosets in brain size and morphology, rates of

development, hormone production and

responsivity, neurodevelopment, neuroanatomy,

and neurodegeneration make marmosets a poor

model for human menopause and its association

with age-related cognitive decline and

neurological disease in humans.

·Although Lacreuse cites the short life

expectancy of marmosets to justify using them in

aging experiments, their accelerated

development makes them inappropriate to study

the much more protracted, hormone-sensitive,

and age-related changes in the human brain.

·Surgically induced, abrupt menopause in captive

marmosets cannot elucidate the complex

genetic, environmental, or epigenetic factors

known to influence the transient and protracted

menopausal transition in humans. 

·The application of extraneous heat and noise-

induced sleep deprivation are not biological

simulations of the hot flashes and sleep

disturbance that plague women in

perimenopause. 

·Marmosets in laboratories suffer from numerous

abnormal physiological systems and functions,

confounding all data coming from these

experiments.

·It is specious to try to study the effects of age-

related hormone changes and extraneous

hormone manipulation in a species that does not

undergo age-related hormone changes and that

is resistant to extraneous hormone

manipulation. 

·There are superior non-animal alternatives

available to study the role of menopause and age-

related hormonal change on cognitive decline and

neurodegeneration in humans.
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Introduction

For the past 10 years, Lacreuse has been subjecting marmoset monkeys to years of

captivity, multiple invasive surgeries, hormone manipulation, frequent restraint, fluid

restriction, sleep deprivation, and batteries of fear- and stress-inducing tests—before

killing and dissecting them. The purported purpose of these harmful and deadly

experiments is to study the role of menopause and its associated disruptions in thermal

regulation, sleep, and cognitive function in the increased risk of neurodegenerative

diseases in women. However, as reviewed in detail below, marmosets are an exceptionally

inappropriate species to study for this purpose. Inherent differences in sex hormone

function, aging, and gene expression between marmosets and humans, critical differences

in endocrine and neurological processes between the two species, and the profound impact

of captivity on marmosets’ physiological systems render data from these experiments

irrelevant to humans. 

To date, these experiments have cost

taxpayers more than $4 million without

producing any meaningful data to inform

new interventions, treatments, or cures

for humans. 
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Marmosets in Lacreuse’s laboratory are subjected to multiple major surgeries. Female

marmosets undergo ovariohysterectomy surgery to have their uterus and ovaries removed.

Male marmosets, typically used as a comparison group in this laboratory, are vasectomized

and in some cases endure additional gonadectomy surgeries to remove their testes.

Ethical Considerations

The experiments conducted by Lacreuse at UMass inflict irreversible harms on common

marmosets—highly intelligent, sensitive monkeys, who, in nature, are profoundly social and

bond in pairs and multi-generational families that stay united throughout their lifetimes.

Marmosets are shipped to Lacreuse’s laboratory when they are approximately 2 years old.

They are then held captive in indoor cages for up to eight years, during which they are

denied any opportunity to see sunlight, climb trees, produce offspring, and enjoy family

life. Instead, they languish in cages, enduring numerous invasive surgeries as well as

stressful, painful, and fear-inducing daily procedures before being killed and dissected.

This is in addition to the extensive, well-documented harms that afflict nonhuman primates

—and common marmosets in particular—in a laboratory setting. 

Brief overview

 Experimenters implant telemetry devices into both the male and female marmosets’ bodies,

through which they monitor brain activity, heart rate, and temperature during sleep and

cognitive testing. To implant these devices, experimenters drill burr holes into the

marmosets’ skulls and screw electrodes directly into the bone. Experimenters make

additional incisions in the marmosets’ necks and abdomens so that electromyography leads

can be implanted. 

Photo credit: Yun, J. W., Ahn, J. B., & Kang, B. C. (2015). Laboratory animal
research, 31(4), 155–165.

Lacreuse’s experiments induce irreversible harms

The experimenters drill burr

holes into the marmosets’

skulls and screw electrodes

directly into the bone.



The experimenters induce hot flashes

by applying 120°F heating pads to

the animals’ bodies

In Lacreuse’s approved protocols and funded grant applications, the majority of these side

effects are omitted from the listed potential harms to the animals. Either Lacreuse is

underestimating the effects of the drug or the marmosets are responding to it in a way that

is dramatically different from humans. 

Either of these possibilities is cause for concern.

In an attempt to induce human-like menopausal symptoms, the experimenters give the

marmosets the drug letrozole to lower their estrogen levels even further than is caused by

the surgery. Letrozole is an aromatase inhibiter used to lower non–ovarian produced

estrogen. Typically used to keep estrogen levels low in post-menopausal women with a risk

or history of estrogen (E+) sensitive breast cancers, the side effects in humans include hot

flashes, joint pain, dizziness, nausea, weight gain, edema, diarrhea, cognitive difficulties,

and fatigue. 

As the aforementioned hormone manipulation does not appear adequate to cause human-

like sleep disturbances or thermal dysregulation (hot flashes) in the marmosets, the

experimenters induce hot flashes by applying 120°F heating pads to the animals’ bodies and

mimic the sleep disruption observed in aging humans and women in menopause by subjecting

them to audio stimuli at 60 to 90 decibels lasting for 6 minutes every 15 minutes throughout

the night. By comparison, the noise that an average vacuum cleaner makes is at about 70

decibels. Lacreuse wakes up the marmosets 46 times per night, keeping them awake for a

total of 276 minutes a night, three consecutive nights a week. 
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This is all in addition to the profound physiological and psychological harm caused by captivity

and life in a laboratory setting.[1],[2] Primates experience increased stress from common

laboratory procedures such as cage cleaning,[3] physical examination,[4] blood draws,[5] and

restraint.[6],[7] Numerous studies have demonstrated that even minor changes in primates’

captive environment, including temporary changes in cage size or location, increase stress levels.

[8],[9] In fact, the mere physical presence of human experimenters and technicians increases

stress in primates.[10],[11]  

Primates in laboratories display aberrant immune-system functioning, including increased

stress-related hormones, dysregulation of the hypothalamic-pituitary-adrenal axis, and

depressed immune-system functioning.[12] Stress-induced immune dysregulation and systemic

inflammation result in significant health consequences, including increased vulnerability to

infection,[13] delayed wound healing and recovery from surgery,[14] and accelerated aging.[15]

Thelack of adequate mental and social stimulation in the laboratory, along with frequent

subjection to common laboratory procedures, leads to chronic stress that negatively affects

primates not only psychologically but also physiologically. Primates held captive in laboratories

and subjected to experimental procedures exhibit signs of extreme distress, including pacing,

rocking, head-twisting, and eating their own feces. Highly traumatized primates will bite their

own flesh, pull out their own hair, and engage in other forms of severe self-mutilation.[16],[17],

[18],[19]

The marmosets are subjected to repeated blood, urine,

and cerebrospinal fluid collections and frequent

restraint. They are repeatedly anesthetized for

procedures and are required to wear collars overnight

to monitor their activity. To ensure cooperation on the

multitude of cognitive tests the laboratory subjects

them to, the marmosets are deprived of their most

basic need—water—for hours on end. The marmosets

also endure stressful social separation tasks that raise

their cortisol levels and are forced to watch videos

designed to be aversive. For awake neuroimaging,

experimenters place the marmosets in movement-

restricting jackets and helmets for hours at a time.

When experiments are completed, the marmosets are

perfused, killed, and dissected. 
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Marmosets in laboratories suffer from all the same effects of acute and chronic stress as

other primates but also have several additional health concerns. For example, marmosets are

extremely sensitive to physical restraint, and their response to restraint affects their heart

and respiratory rates, temperature, and blood pressure.[20] Captive marmosets are prone to

metabolic bone disease,[21] which results in bone lesions and fractures and may be the cause

of the frequent oral disease, including tooth decay, in these animals. Experimenters currently

believe this may be related to the higher vitamin D requirements of marmosets, differences in

vitamin D metabolism in marmosets, or vitamin D deficiency caused by complete deprivation

of sunlight in laboratory cages.[22] Marmosets in laboratories are also likely to suffer from

secondary systemic amyloidosis[23] and insulin resistance.

At a recent National Academies of Sciences, Engineering, and Medicine workshop dedicated

to discussing the care, use, and welfare of marmosets in biomedical experiments, experts

drew the following conclusion:

Marmosets are particularly vulnerable

[Marmosets] have unique requirements in terms of

housing, feeding, social interactions, and other

facets, many of which remain poorly understood.

There is no standardized diet for captive

marmosets, and there are few people who have

expertise in working with them. Marmosets in

captivity are susceptible to arange of diseases and

areparticularly prone to marmoset wasting

syndrome, which is not one disease but a

perplexing composite of multiple conditions and

etiologies that could be due to poor nutrition,

stress, infection, ora combination of these factors.

Their breeding and parenting behavior is also

poorly understood, and although marmosets are

easierto handle than tamarins (as they tend to be

less easily stressed and aremore easily habituated

to handling), their multiple births can lead to poor

parenting performance.[24]

Participants of this workshop acknowledged that the welfare needs of marmosets are poorly

understood. The current standards for their housing and enrichment do not meet their needs

to forage, climb, and engage in problem-solving and complex social interactions.[25],[26]

Perhaps even worse, experimenters do not know how to provide marmosets with a proper

diet. Not surprisingly, this lack of understanding of even the most basic care causes the

marmosets to experience a host of devastating and debilitating health conditions, including a

condition referred to as marmoset wasting syndrome (MWS). 
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Marmoset wasting syndrome causes weight loss,

diarrhea, anemia, alopecia, weakness, intestinal

inflammation, osteoporosis, paralysis, and death

MWS, also called chronic lymphocytic enteritis (CLE), is a systemic inflammatory disorder

that leads to weight loss, diarrhea, anemia, alopecia, weakness, intestinal inflammation,

osteoporosis, paralysis, and death.[27],[28] Efforts to curb the profound and deadly weight

loss associated with improper nutrition have only caused additional health concerns. If they

are not wasting away, marmosets in laboratories are becoming obese and suffering from

health complications associated with that condition, including altered glucose metabolism,

reduced insulin sensitivity, increased risk of heart disease and diabetes, and myriad

metabolic dysfunctions.[29] 

Effects of harm-induced altered physiology on data reliability 

The cascade of negative effects on marmosets’ health and well-being, caused by the acute

and chronic stress of captivity, laboratory procedures, and improper diet, is reason enough

not to proceed, but it is also important to consider the scientific ramifications of the

numerous physical and psychological abnormalities these animals experience. 
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The altered insulin sensitivity seen in marmosets in laboratories is also cause for concern, as

studies indicate that in humans, changes in insulin growth factor play a critical but complex

role in mediating the effects of age-related estrogen and androgen reduction. Additionally,

the impact of MWS/CLE on nutrient absorption makes medication dosing, especially oral

dosing such as is used in Lacreuse’s lab, particularly problematic.[36]

The uncontrolled and unmeasured immune system dysfunction and subsequent inflammation

in these animals will confound any data being collected in this laboratory, as inflammation

plays a crucial role in menopause symptomology[30] and most neurodegenerative and age-

related conditions, including Alzheimer’s disease.[31],[32],[33],[34] Stress is also known to

impact marmosets’ performance in a variety of cognitive tasks, and this varies across age and

sex in this species.[35]

In summary, marmosets in laboratories suffer from numerous abnormal

physiological systems and functions prior to any additional experimental

manipulations. This impacts the scientific value of these experiments as well

as the ethics of conducting them in the first place. Alarmingly, this

information was omitted from Lacreuse’s approved protocols and her funded

National Institutes of Health grant applications, making it impossible for the

reviewing bodies to conduct a true evaluation of the harms and benefits of

these studies before approving them. These potential confounds are also

excluded from Lacreuse’s publications, compromising reviewers’ ability to

assess the scientific merit of the data being published. 
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In humans, menopause, or the cessation of menses,[37] is preceded by a gradual decline in

ovarian function that typically lasts between 4 and 8 years[38],[39] and involves multiple

physiological systems. During this transitional process (often referred to as

perimenopause), hormone levels begin to fluctuate and fall[40] and some women may begin

to experience cognitive difficulties,[41],[42],[43] mood disturbances,[44],[45],[46]

vasomotor symptoms (hot flashes and or night sweats),[47] irregular sleep patterns,[48],

[49] bone loss,[50] and urogenital symptoms.[51] Age of onset, duration, symptomology,

symptom frequency, and symptom severity vary considerably among individual women.

[52],[53],[54] Additionally, there are complex interactions between age of onset,[55],[56],

[57] diet,[58] body mass,[59],[60] exercise regimes,[61] medical history,[62] reproductive

history,[63] genetics,[64] and cultural[65],[66] and environmental factors[67],[68],[69] that

influence women’s peri- and post-menopausal symptomatology and their subsequent risk

for neurodegenerative or cardiovascular disease.[70]  

As will be reviewed in more detail below, common marmosets are an exceptionally poor

choice of species for the study of human menopause. In short, surgically induced, abrupt

menopause in captive marmosets cannot mimic the complex genetic, environmental, or

epigenetic factors known to influence the natural menopausal transition and its associated

symptoms in humans. Critical differences between humans and marmosets in age-related

changes in hormone production,[71] reproductive physiology,[72],[73] response to

extraneous hormones, neurodevelopment,[74],[75] neuroanatomy,[76],[77] age-related

neurodegeneration,[78],[79] and tao isoform expression[80] severely limit the likelihood

that Lacreuse’s experiments will advance our understanding of menopause and its

association with age-related cognitive decline and neurological disease in humans. 

2015, 'Modeling Parkinson’s disease in the common marmoset ... overview of models, methods, and animal care' ... | Yun, J, Ahn, J,

Scientific Limitations
Brief overview

Marmosets are an exceptionally poor choice of

species for the study of human menopause
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Marmosets are an inappropriate choice of species for the study of

human menopause

 Unlike humans and other primates, common marmosets do not naturally undergo menopause.

Their estrogen levels do not gradually decrease with age. They display no evidence of

reproductive senescence or hormone-mediated osteoporosis—even when they are well into

their more advanced ages of 14 and 16 years.[81] In fact, throughout their lifetimes,

marmosets have elevated concentrations of plasma estradiol[82] and progesterone[83]

compared to humans and Old World primates. This is true for marmosets who are intact and

for those who have had their ovaries surgically removed.[84] Additionally, marmosets do not

respond to circulating or extraneous hormones in the same way as humans and other primates.

Compared to humans and other primates, marmosets display what is referred to as

“generalized steroid hormone resistance,”[85] i.e., relatively high levels of steroid hormones

in circulation and relatively low response to exogenous steroids. And they exhibit target-

tissue resistance to gonadal steroid hormones.[86] 

 In short, Lacreuse has chosen to study the

effects of age-related hormone changes and

extraneous hormone manipulation on

cognition and brain pathology in a species

that does not undergo age-related hormone

changes and that is resistant to extraneous

hormone manipulations. In a futile attempt to

circumvent marmosets’ natural biological

processes, Lacreuse surgically removes their

ovaries. However, surgically induced

menopause in marmosets is not comparable to

the gradual menopausal transition experienced

in women or even the abrupt drop in hormonal

levels from surgical menopause in women. 

Experimenters have been performing ovariectomies on sensitive marmosets for decades, and

the data from these experiments is consistent and clear—ovariectomized (OVX) marmosets

do not exhibit menopausal symptoms similar to those observed in human women. For

example, OVX marmosets do not exhibit the changes in metabolism, body weight, body

composition, bone density, energy expenditure, physical activity, fasting glucose, or glucose

tolerance, or the measureable mood changes or cognitive impairments seen in peri- or post-

menopausal women.[87],[88] More importantly, in regards to Lacreuse’s experiments, OVX

marmosets do not experience hot flashes, mood disorders, sleep disturbances, or cognitive

impairments.
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The data from OVX marmosets, on the other hand, is in direct contrast with data from human

women, for whom surgically induced menopause is associated with more severe symptoms

and health risks than those observed in spontaneous gradual menopause.[89] For example,

women who have had surgically induced menopause are shown to have significantly greater

cognitive impairments than women who undergo non-surgical menopause.[90],[91] The

earlier the surgical induction of menopause, the more rapid the cognitive decline, the higher

the risk of dementia, and the closer to Alzheimer’s disease the pathology.[92],[93] Induced

menopause is associated a with higher risk for cardiovascular disease,[94],[95] slower gait

speed,[96] decreased bone mineral density, and increased fracture risk[97] compared to

natural spontaneous menopause. 

Likely because of the lack of natural menopause in marmosets, their unhuman-like response

to ovariectomy, and their inherent insensitivity to estrogen, generating the menopause

symptoms that occur naturally in humans requires additional experimental manipulation in

marmosets. For example, Lacreuse orally administers the drug letrozole, which in post-

menopausal humans is known to cause hot flashes, joint pain, dizziness, nausea, weight gain,

edema, diarrhea, cognitive difficulties, hypercholesterolemia, and extreme fatigue.[98],[99],

[100] Presumably, if OVX marmosets dosed with letrozole were physiological similar to

women in peri- or post-menopause, they would experience the vasomotor symptoms

observed in those women. Not surprisingly, given the existing literature on and

understanding of marmosets’ unique endocrinology, this is not the case. Lacreuse still has to

induce “hot flashes” in these marmosets using heating pads and thermal vests, and she is now

inducing sleep fragmentation using thermal manipulations and frequent loud noises. 

Marmosets do not naturally

undergo menopause
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Interestingly, none of Lacreuse’s published studies to date compares menopause-like

symptoms in OVX female marmosets to those in intact female marmosets. This seems a

critical comparison to make when attempting to simulate human menopause via ovariectomy.

The published data compare only OVX females to other OVX females on or off hormone

replacement therapy,[101] intact males to intact females,[102] or OVX females to

gonadectomized (GDX) males.[103],[104] In some instances, OVX marmosets whose baseline

estrogen levels were considered too high were excluded from analysis,[105] or baseline

estrogen level measurements themselves were thrown out and replaced with values the

experimenters were comfortable with.[106] 

In summary, surgically induced menopause is associated with

increased symptomology in humans, but in hormone-insensitive

marmosets, ovariectomies do not appear to create even the natural

human menopause–like symptoms Lacreuse is interested in, such as

hot flashes, cognitive impairments, and sleep disturbances. In other

words, Lacreuse’s own work does not indicate that marmosets exhibit

human menopause–like symptoms even after surgical and

pharmaceutical intervention, yet she continues to claim that these

animals are a good model for studying human menopause.
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OVX marmosets will not provide useful data on the effects of

menopause on age-related changes in the brain and cognition in

humans

Typically described as a type of “brain fog,” women in menopause describe particular

difficulty with memory and lexical access, verbal fluency, as well as subtle difficulties with

verbal and episodic memory, attention, and executive function.[107],[108] For most women,

these cognitive symptoms are temporary and primarily associated with the perimenopausal

stage, often dissipating after the menopausal transition is complete.[109],[110] This is

important to note because there is no perimenopausal stage to evaluate in Lacreuse’s

experiments. Marmosets’ ovarian-produced hormones are abruptly shut down surgically,

preventing Lacreuse from studying the physiological mechanisms occurring during

perimenopause that are likely involved in the cognitive symptoms women experience during

this time.

In a recent review of the role of estrogen in cognitive aging, Russell et al. emphasized exactly

the problem with using surgically induced menopause to model perimenopausal cognitive

impairments:

[O]variectomy models the loss of E2

[estradiol], temporally this is

markedly different from the changes

that occur during natural menopause.

In menopause, the less abrupt loss of

E2 can produce cognitive deficits that

continue to develop through later life.

Furthermore, studies utilizing

ovariectomy in young animals will

produce a preclinical model that is

inappropriate to interrogate the

interaction between decreased

estrogen, the aging brain, and

cognitive dysfunction. The aging brain

and associated cognitive dysfunction

is developing concurrently with the

menopausal transition in clinical

populations. These age-related

changes will not be occurring in the

preclinical model.[111]
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 In other words, in addition to the dramatically different effects experienced by marmosets with

surgically induced menopause and women with induced or spontaneous menopause, the fact that

Lacreuse’s experiments forgo the entire “transitional” stage of menopause is particularly

problematic for her cognitive assessments. 

In humans, the effect of estrogen levels on menopause-related cognitive symptoms is very

unclear—some studies show enhanced cognitive performance with increased plasma

estradiol, whereas others do not. A large-scale study of more than 4,000 post-menopausal

women failed to show any cognitive benefit from taking hormone replacement therapy.[112]

Similarly, other contributing factors, such as body mass index (BMI) and overall health, are as

predictive for cognitive difficulties as circulating estrogen levels.[113] Interestingly, some

studies in humans indicate that menopausal women outperform age-matched men on

memory tasks,[114] suggesting dropping estrogen levels may play less of a role in sex

differences in cognitive decline than Lacreuse would have us believe. Most studies that find a

cognitive benefit from hormone replacement therapy find them during the perimenopausal

period, which Lacreuse cannot study in marmoset monkeys. 

The fact that Lacreuse’s experiments forgo the entire “transitional” stage

of menopause is particularly problematic for her cognitive assessments. 
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Also critical to consider are the substantive differences between marmoset and human brain

size, development, structure, and function. One of Lacreuse’s purported goals is to

investigate whether the hormonal changes that occur during menopause contribute to

women’s increased risk of neurodegenerative disease, with particular emphasis on

Alzheimer’s disease. While all primate brains share some degree of similarity, there are key

differences in marmoset brain structure, function, and development that make any

neurological findings from Lacreuse’s studies highly unlikely to be applicable to humans.

There are fundamental differences in gene expression and protein function in the brains of

marmosets compared to humans.[115] There are differences in neurodevelopment[116],

[117] and neuroanatomy,[118],[119] including in the timing, rate, and patterns of gray- and

white-matter development across the animal’s lifespan.[120-125] In marmosets, tau—a

protein that makes up a major component of the neurofibrillary tangles in Alzheimer’s

disease—is actually much more similar to the protein found in rodents’ brains than that

found in humans.[126] Marmoset brains are also less sexually dimorphic than those of

humans and other primates,[127] which will likely impact the applicability of any of

Lacreuse’s sex-related findings to humans. While marmosets exhibit some evidence of

cognitive decline with age, they do not develop human-like Alzheimer’s disease. In fact,

Alzheimer’s disease is a condition unique to humans that has never been successfully

recapitulated in a non-human animal.[128-132]

Though Lacreuse cites the short life expectancy of marmosets to justify their use in aging

experiments, their accelerated development makes them an inappropriate choice for

studying the much more protracted and hormone-sensitive age-related changes in the human

brain. In a recent (2019) review, biological anthropologist and Yerkes National Primate

Research Center experimenter Todd Preuss writes:

The very small size of the marmoset brain makes

it very likely that the functions of its cortical

systems differ in important ways from those of

larger-brained primates, if only because of the

much more limited amount of neural machinery

marmosets and other callitrichines have to work

with. . . . Given the small size and rapid

development of marmosets, it is tempting to view

marmoset life history as a condensed version of

that of longer-lived primates. Yet there is

evidence primates vary in patterns of postnatal

growth and development.....This difference, and

the specializations of human development

recognized by Bogin—namely, the addition of

childhood and adolescent stages—imply

differences in the hormonal control of

development.[133]
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Humane, effective non-animal methods are
available for the study of human menopause
The success rate for new treatments for age-related conditions in humans developed from

preclinical animal experimentation is abysmal.[134-138] Lacreuse’s ill-conceived marmoset

experiments will be no exception. The complex interaction between age, hormones, genetics,

diet, and pre-existing physical and mental health status on menopause and menopause-

related symptoms in humans is far too complex to be “simulated” in a laboratory. It is absurd

to try to do this in a species with such substantial differences in key physiological systems.  

On the other hand, in vivo imaging of women at

various stages of the menopausal transition,

who are at risk for developing or living with

various neurological disorders, [139],[140]

postmortem analysis of brain tissues from

patients,[141] and large-scale epidemiological

studies[142],[143] are helping researchers

understand the role of estrogen in various

human diseases and behaviors.[144] Cutting-

edge technology, including pluripotent stem cell

models,[145],[146] three-dimensional cell-

culture models,[147],[148] and organ-on-a-chip

technologies[149],[150] are being used not only

to serve as more accurate and detailed models

of human neurodegenerative disease but also to

test the effects of estrogen at the cellular level.

[151],[152]

For example, the effects of estrogen on cognition,[152-155] brain structure and function,[156-

159] mood,[160-162] hot flash frequency and severity,[163],[164] sleep disturbances,[165],

[166] and risk for neurodegenerative diseases have all been successfully studied in human

volunteers. Researchers studying human women have investigated whether hormone

replacement therapy is associated with lower risk for the amyloid β-deposits associated with

Alzheimer’s disease,[167] and whether resveratrol, a phytoestrogen available in many foods,

can ameliorate symptoms associated with menopause.[168],[169] A recent study of more than

2,500 post-menopausal women indicated that the degree of cognitive decline experienced was

associated with corresponding depressive symptoms.[170] These studies with human

volunteers are advancing our understanding of the complex interaction between genetics,

[171] age of onset, baseline health,[172] and menopause symptomology and allowing

researchers and physicians to calculate the risks and rewards of estrogen replacement for

individual patients.[173-176]  

These critical findings are not obtainable in animal models of menopause or human disease.
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Marmoset monkeys have only recently come into favor as a model for human aging and

age-related conditions and diseases. Chosen for their convenience, including their small

size, fecundity, and short life expectancy, rather than their physiological proximity to

humans, marmosets are being subjected to harmful experimental procedures in areas of

research for which they are profoundly inappropriate. The evidence presented above

clearly demonstrates that Lacreuse’s experiments are an alarming example of this poorly

thought-out research plan. It is abundantly clear that marmosets are not an appropriate

model to advance our understanding of menopause, its associated symptoms in humans, or

its potential role in neurodegenerative disease risk in women. The decision to choose a

species that fares so terribly in a laboratory setting and does not experience a menopausal

transition or its associated symptoms, is insensitive to extraneous hormone fluctuations,

and does not develop Alzheimer’s disease naturally to study how menopause and

hormones influence the risk of neurodegenerative disease in humans is absurd. Worse, in

their attempts to force marmosets to experience menopausal symptoms, the

experimenters are conducting additional invasive procedures and inflicting increasingly

greater harm on these vulnerable animals, all while moving further away from the

phenomena that they are attempting to study. To spend taxpayer dollars on such ill-

conceived experiments when there are non-animal alternatives is unnecessary and a

flagrant misuse of the already sparse resources dedicated to women’s health. Please

discontinue your support of these valueless experiments on marmosets immediately.

Conclusion

Photo courtesy of Pixabay
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