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Abstract

Duchenne muscular dystrophy (DMD) is an X-linked human
disorder in which absence of the protein dystrophin causes
degeneration of skeletal and cardiac muscle. For the sake of
treatment development, over and above definitive genetic and
cell-based therapies, there is considerable interest in drugs that
target downstream disease mechanisms. Drug candidates have
typically been chosen based on the nature of pathologic lesions
and presumed underlying mechanisms and then tested in ani-
malmodels.Mammalian dystrophinopathies have been charac-
terized in mice (mdx mouse) and dogs (golden retriever
muscular dystrophy [GRMD]). Despite promising results
in the mdx mouse, some therapies have not shown efficacy
in DMD. Although the GRMD model offers a higher hurdle
for translation, dogs have primarily been used to test genetic
and cellular therapies where there is greater risk. Failed trans-
lation of animal studies to DMD raises questions about the pro-
priety of methods and models used to identify drug targets and
test efficacy of pharmacologic intervention. The mdx mouse
and GRMD dog are genetically homologous to DMD but
not necessarily analogous. Subcellular species differences are
undoubtedly magnified at the whole-body level in clinical
trials. This problem is compounded by disparate cultures in

clinical trials and preclinical studies, pointing to a need for
greater rigor and transparency in animal experiments.Molecular
assays such as mRNA arrays and genome-wide association
studies allow identification of genetic drug targets more closely
tied to disease pathogenesis. Genes in which polymorphisms
have been directly linked to DMD disease progression, as
with osteopontin, are particularly attractive targets.
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Introduction

D uchenne muscular dystrophy (DMD) is an X-linked
recessive disorder that affects approximately 1 in
5000 newborn human males (Cowan et al. 1980) in

whom absence of the protein dystrophin causes degeneration
of skeletal and cardiac muscle (Hoffman et al. 1987). A less
severe form, with in-frame DMD gene mutations, is termed
Becker muscular dystrophy (BMD) (Malhotra et al. 1988).
For sake of treatment development, considerable focus has
appropriately been placed on introducing the DMD gene or
correcting the underlying mutation (Foster et al. 2012;
Konieczny et al. 2013). Some of these therapies involve phar-
macologic approaches, as with compounds that promote stop
codon read-through or correct frame-shift mutations. Drugs
also have been developed to upregulate surrogate proteins
that could take the place of dystrophin at the muscle cell mem-
brane (Malik et al. 2012). Still others that target downstream
mechanisms of disease and associated lesions, such as muscle
necrosis, inflammation, fibrosis, or regeneration, have been
studied (Malik et al. 2012; Ruegg 2013).

Animal models have been used extensively to identify tar-
gets for drug therapy and assess therapeutic efficacy. Spontane-
ous mammalian forms of X-linked muscular dystrophy due to
dystrophin deficiency have been identified in mice (Bulfield
et al. 1984; Gillis 1999), cats (Carpenter et al. 1989; Gaschen
et al. 1992), pigs (Hollinger et al. 2013a), and multiple dog
breeds (Figure 1) (Cooper et al. 1988; Kornegay et al. 1988,
2012a; Smith et al. 2011; Walmsley et al. 2010). The disease
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phenotype in dystrophic dogs is more severe than in mice, sug-
gesting that canine studies might better translate to humans.
Dogs with golden retriever muscular dystrophy (GRMD) have
been used increasingly to define disease mechanisms and assess
potential treatments (Kornegay et al. 2012a). In the context of
these studies, marked phenotypic variation has been seen at
the level of individual animals and different muscles. Such var-
iability confounds statistical analysis in preclinical trials but also
provides a platform to define disease pathogenesis.

This paper reviews the use of animals in developing pharma-
cologic therapies in a general sense and for DMD in particular.
Emphasis is placed on drugs that either promote dystrophin or
surrogate gene/protein expression or delay downstream patho-
genetic events. Published preclinical studies targeting patholog-
ic lesions or disease mechanisms are reviewed, highlighting the
frequent failure of animal experiments to translate to human tri-
als.We subsequently emphasize the potential for genetic assays,
like mRNA expression profiles and genome-wide association
studies (GWAS), to better identify drug targets, especially
when results are correlated with phenotypic data.

Current Status and Therapeutic Goals

Glucocorticoids are the current standard of care for DMD
(Manzur et al. 2008; Moxley et al. 2010). Beneficial effects
of prednisone are poorly understood and cannot be explained
by antiinflammatory properties alone (Kissel et al. 1993;Weller
et al. 1991) (see treatments targeting Muscle Inflammation
below). Despite beneficial effects of prolonged ambulation
and improved cardiopulmonary function, glucocorticoids are
often discontinued due to side effects ranging from weight
gain to pathologic bone fractures (Connolly et al. 2002). This
has prompted use of many different protocols and a search for
alternative treatments, as with steroid analogues and other

agents that target disease mechanisms. In this context, the
ultimate goal is to identify a therapy that achieves at least the
benefit of steroids, with fewer side effects.

Drug Development Regulatory Process

The Food and Drug Administration is governed by the Federal
Food, Drug, and Cosmetic Act, which defines drugs as “articles
intended for use in the diagnosis, cure, mitigation, treatment, or
prevention of disease in man or other animals” and “articles
(other than food) intended to affect the structure or any function
of the body of man or other animals” (http://www.fda.gov/
RegulatoryInformation/Legislation/FederalFoodDrugand
CosmeticActFDCAct/default.htm). Therapeutic biologics
(monoclonal antibodies and small protein molecules) are
included in the definition of drugs (Roberts and McCune,
2008). The FDA generally becomes involved in the drug dis-
covery process after the drug’s sponsor (usually themanufactur-
er or potential marketer) has screened the new molecule for
pharmacological activity and acute toxicity potential in animals
and wishes to test its diagnostic or therapeutic potential in hu-
mans. The process for human use entails filing an Investigation-
al NewDrug Application and testing through a series of clinical
trials (Phases 1–4), extending from smaller populations to
establish safety (Phase 1) to large diverse clinical groups
to determine efficacy (Phase 4) (Lesko et al. 2000). There
are currently 121 DMD studies of diagnostic tests and treat-
ment trials in various stages of initial enrollment to termina-
tion on the NIH Clinical Trials.gov website (http://www.
clinicaltrials.gov/ct2/results?term=Duchenne+Muscular
+Dystrophy&Search=Search). An analogous agency, the
European Medicines Agency (http://www.ema.europa.eu/
ema/index.jsp?curl=pages/home/Home_Page.jsp&mid=),
regulates drug development in Europe (Lis et al. 2012).

Figure 1 The canine dystrophin protein (Ensembl protein ID ENSCAFP00000031637), along with mutation information for seven dog breeds
known to exhibit DMD-linked muscular dystrophy. CH indicates calponin homology domains, which are actin-binding. WWP indicates the
WW domain, which binds proline-rich polypeptides and is the primary interaction site for dystrophin and dystroglycan. EF indicates members
of the EF-hand family; this domain stabilizes the dystrophin-dystroglycan complex. ZNF represents a putative zinc-binding domain, ZnF_ZZ,
which is present in dystrophin-like proteins and may bind to calmodulin. All 79 exons are represented. Exons and protein domains are depicted
approximately to scale. Insertion and deletion mutations are shown above the exons. Arrows at the bottom of the figure indicate point mutations.
Reprinted by permission from Bentham Science Publishers: Current Genomics. Comparative genomics of X-linked muscular dystrophies: The
golden retriever model, 14:330–342, © 2013.
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There is high risk in drug development. Only 16% of drugs
originating collectively from the 50 largest pharmaceutical
companies in the United States between 1993 and 2004
were approved (DiMasi et al. 2010). The top two reasons
for failed drug development in pharmaceutical companies
in the United Kingdom from 1964 to 1985 were pharmacoki-
netics (PK) (39%) and efficacy (29%). With regard to PK
data, it is especially important to pay close attention to differ-
ences among species (Lin 1995; Tibbitts 2003) and, in the
case of dogs, even breeds (Fleischer et al. 2008). With more
careful analysis of the PK properties of drugs and develop-
ment of tools to better predict drug absorption and clearance,
drug–drug interactions, and scaling of PK parameters from
animals to man (Walker 2004), PK issues accounted for
only 10% of drug failures in 2000 (Kola and Landis 2004).
Beyond issues related to drug PK, problems with drug target-
ing and efficacy have persisted. A more recent study found
that success rates for Phase II human clinical trials for drugs
originating from 16 companies, representing 60% of global
research and development spending, had fallen from 28%
in 2006–2007 to 18% for 2008–2009 (Arrowsmith 2011).
Alarmingly, this same review noted that 51% of 108 reported
Phase II failures occurred due to insufficient efficacy, despite
the fact that most drugs proceeded through standard valida-
tion methods, with assessment in animal models (Plenge
et al. 2013). Paralleling the low success rate for pharmaceuti-
cal industry drug approval, only 28 of 76 (37%) highly cited
studies that investigated a preventive or therapeutic interven-
tion in an in vivo animal model over the 1980 to 2000 period
were replicated in human randomized trials (Hackam and Re-
delmeier 2006). Overall, most of these animal efficacy studies
included dose-response gradients, clinically relevant out-
comes, and long-term endpoints, but few incorporated ran-
dom animal allocation, adjustment for multiple hypotheses
testing, or blinded outcome assessment. Animal studies in-
corporating dose-response gradients were more likely to
translate to humans. A follow-up study provided 55 different
recommendations to improve translation of preclinical research,
including power calculation to determine sample size, random-
ized treatment allocation, and characterization of disease pheno-
type in the animal model prior to experimentation (Henderson
et al. 2013). Additional papers have highlighted inconsistencies
in experimental design and statistical analysis, with associated
challenges in reproducing results, for a broad range of preclin-
ical studies directed at neurological diseases (Benatar 2007;
Sena et al. 2007; Steward et al. 2012). This ledNational Institute
of Neurological Disorders and Stroke (NINDS) Director Story
Landis and colleagues (Landis et al. 2012) to call for greater
transparency in preclinical studies and more rigorous experi-
mental design, to include random assignment of animals to
treatment groups, blinding of data assessment, greater attention
to power analysis of outcome parameters used to establish ben-
efit, and increased stringency in data handling.
The “lost in translation” problem for preclinical research

has been attributed to three issues, identified as the “Butterfly
Effect” (chaotic behavior whereby small differences in the
animal model lead to substantial differences in clinical

results); the “Princess and the Pea” problem, based in vari-
ability of effect size when progressing from biochemical find-
ings through tissue culture and animal and human studies (the
pea does not indent the mattress to the same degree as the
princess); and the “Two Cultures” problem in preclinical
and clinical research, as evidenced by the data collection is-
sues summarized above (Ergorul and Levin 2013). Some
guidance for increasing the rigor of preclinical studies could
be drawn from the “Animal Rule” put in place by the FDA to
guide drug approval in instances of chemical, biologic, radio-
logic, and nuclear threats “when adequate and well-controlled
clinical studies in humans cannot be ethically conducted and
field efficacy studies are not feasible.” In such cases, drugs
may be approved for human use when four criteria are ful-
filled: (1) data define pathophysiological mechanisms for
the product; (2) the product effect is demonstrated in more
than one species; (3) the animal study endpoint is clearly re-
lated to the desired benefit in humans; and (4) PK data in an-
imals and humans are sufficiently well understood to allow
selection of an effective dose in humans (Roberts and
McCune 2008).

Animal Models

The National Research Council has defined a biomedical
model as “a surrogate for a human being, or a human biologic
system, that can be used to understand normal and abnormal
function from gene to phenotype and to provide a basis for
preventive or therapeutic intervention in human diseases”
(National Research Council 1998). This same report empha-
sized that biomedical models can be “of many types – from
animal models of human diseases to animal, in vitro, or mod-
eling systems for studying any aspect of human biology or
disease” and that “a model need not be an exact replica of a
human disease or condition” (here, specifically citing the mdx
mouse model of DMD/BMD). An earlier National Research
Council study, conducted in 1985 before the discovery of the
DMD gene, emphasized that biologic models can be divided
into two broad classes, depending on whether the modelling
is based on analogy or homology. Modelling by analogy im-
plies a point-by-point relationship between one structure or
process to another (National Research Council 1985). From
a mathematical perspective, this is termed mapping. By def-
inition, modelling by analogy requires that there are similar-
ities between the structures and processes being compared in
the modeling relationship. On the other hand, modelling by
homology implies a shared evolutionary history and match-
ing DNA makeup between the two structures or processes.
Importantly, for models by homology to be functionally use-
ful, they must also be good models by analogy for the phe-
nomenon being studied. Unfortunately, as discussed further
below in the context of DMD, homolog animal models are
not always good analog models because of physiologic adap-
tions that may have occurred over time. Surrogate models
may also be classified as either one-to-one, as with a disease
state in humans and a particular species that share the same
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clinical features (mdx or GRMD compared with DMD), or
many-to-many, where findings from more than one species
or organ system may model particular features of the under-
lying process or state (multiple features of DMD potentially
being modeled by different available animal models or sys-
tems) (National Research Council 1985). The many-to-many
approach is probably best suited to address questions raised
by complex genetic diseases such as DMD.

The regulatory process discussed above highlights the crit-
ical role that animal studies play in essentially all phases of
preclinical drug development, extending from the original
target identification; determination of the drug’s PK, absorp-
tion, distribution, metabolism, and excretion; potential toxic-
ity to the treated animal or person; and ultimate efficacy
against the intended disease (Roberts and McCune 2008).
Efficacy studies have often been completed in symptomatic,
experimental animal models, where a drug’s efficacy is tested
on a clinical effect, as with high blood pressure, versus the
underlying disease itself. With the advent of the genomic
era, specific genetic disease models have become more
prevalent (Hunter 2011).

Genetic models may either occur naturally (spontaneously)
or be produced through genetic manipulation (genetically
modified [transgenic or gene knock-down/out] animals).
For sake of DMD, both spontaneous and genetically modified
animal models have been used to define pathogenetic mech-
anisms and establish efficacy of experimental therapies.
Nonmammalian models, occurring either by natural DMD
gene mutation or gene knock-down/out, have been charac-
terized in the zebrafish (Gibbs et al. 2013), Drosophila fly
(Shcherbata et al. 2007), and Caenorhabditis elegans nem-
atode (Bessou et al. 1998). These models offer tremendous
value in studying disease pathogenesis and developmental
therapeutics.

Spontaneous mammalian models of DMD have been iden-
tified in the mouse (Bulfield et al. 1984; Gillis 1999), cat
(Carpenter et al. 1989; Gaschen et al. 1992), pig (Hollinger
et al. 2013a), and multiple dog breeds (Cooper et al. 1988;
Kornegay et al. 1988, 2012a; Smith et al. 2011; Walmsley
et al. 2010). Cats withDMD gene mutations express a curious
debilitating hypertrophic myopathy and are predisposed to a
syndrome similar to malignant hyperthermia during stress or
anesthesia (Gaschen et al. 1992, 1998). These features limit
the feline condition’s value as a model. The malignant
hyperthermia-like syndrome also occurs in DMD (Gurnaney
et al. 2009) and occasional GRMD dogs (JN Kornegay,
unpublished data). Pigs with a spontaneous DMD gene mis-
sense mutation and an analogous stress syndrome were re-
cently described (Hollinger et al. 2013a; Nonneman et al.
2012). In addition, transgenic/knock-out gene technology
can be applied to produce pigs with specific DMD gene
mutations (Klymiuk et al. 2013), providing other valuable
models (see the mdx52 model below).

From an investigational standpoint, drug discovery typi-
cally starts by developing and testing hypotheses using in
vitro systems, including cell culture and ex vivo explants,
and, increasingly, as discussed below, genetic assays. The

DMD research field is fortunate to have nonmammalian and
both small (mdx mouse) and large (GRMD; potentially pigs)
mammal models available for follow-up mechanistic and
preclinical studies. Once hypotheses have been substan-
tiated in vitro or in nonmammalian models, treatments
should ideally first be tested in the mdx mouse and, if effi-
cacy is shown, moved to GRMD dogs before initiating
DMD trials. But, as reflected by this review, because of ex-
pense, lack of familiarity, and relative scarcity, dystrophic
dogs have not been widely used in pharmacologic testing.
This deficiency could be partially countered by using the
GRMD model in tandem with the mdx mouse in genetic as-
says to better identify relevant therapeutic targets and then
more consistently testing drug efficacy first in mdx mice
and then dystrophic dogs, especially if compounds carry sub-
stantial risk to humans.

DMD

To understand whether an animal disease truly models its
counterpart in people, one must first appreciate the nuances
of the human condition. For sake of preclinical drug efficacy
studies, care should be taken in identifying the age over which
treatment is administered and the natural history of outcome
parameters during this period. Ideally, the time course for
treatment and outcome parameters used to assess efficacy
should approximate those of DMD. Patients with DMD
have delayed milestones, typically not walking until approx-
imately 18 months of age or later (Bushby et al. 1999, 2010).
The diagnosis is generally not made until around 5 years of
age. Other early symptoms that may be seen prior to diagnosis
include frequent falls and difficulty in running and climbing
stairs. By definition, affected boys are wheelchair bound by
12 to 13 years, although mild and severe forms of the disease
may deviate from this trajectory (Nicholson et al. 1993c). In
contrast, BMD patients walk beyond 16 years of age (Bushby
et al. 2010). There is variation among DMD patients in other
outcome parameters, including measures of strength and joint
angles/contractures (Brooke et al. 1983; McDonald et al.
1995; Ziter et al. 1977). The rate of functional decline may
also vary. Brooke et al. (1983) noted that children walk and
climb stairs fairly easily until 8 years, when function declines
rapidly. McDonald et al. (1995) found a relatively uniform
decline of muscle strength from 5 to 13 years. Results from
joint angle measurements, reflecting the degree of contrac-
ture, and strength testing tend to correlate (Brooke et al.
1983). Vignos et al. (1963) indicated that quadriceps strength
was the single best predictor of time to wheelchair. The
6-minute walk test (6MWT) has become the principal out-
come measure used in DMD clinical trials (Mazzone et al.
2013; McDonald et al. 2013a, 2013b). Results of the
6MWT correlate with wheelchair status (Mazzone et al.
2013; McDonald et al. 2013a) and knee extensor strength
(McDonald et al. 2013b). Most affected boys die due to respi-
ratory or cardiac disease by their late teens or early twenties,
although life has been extended with more aggressive
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supportive care (Eagle et al. 2007; Finsterer and Stöllberger
2003; Inkley et al. 1974).
Individual patients, muscles, and myofiber types are differ-

entially affected in DMD (Ciciliot et al. 2013; McDonald
et al. 1995). Variable involvement at the patient level suggests
the possibility of genetic influences, as with modifier genes
(see discussion below under Pharmacogenomic Drug Target-
ing). With regard to individual muscles, DMD is a proximal
myopathy, with muscles like the quadriceps being selectively
affected. In contrast, certain other muscles, such as those
of the eye, are relatively spared (Karpati et al. 1988). Some
muscles may even undergo paradoxical hypertrophy, as
with classical calf pseudohypertrophy (Cros et al. 1989;
Jones et al. 1983). Fast twitch (type IIb) myofibers are selec-
tively affected, leading to characteristic slow twitch (type 1)
predominance (Webster et al. 1988).
As discussed above and further below, GRMD dogs also

demonstrate dramatic phenotypic variation. Moreover, differ-
ential muscle involvement is a prominent feature of both the
GRMD andmdxmodels (reviewed in Kornegay et al. 2012b).
Selective muscle involvement appears to occur because of
mechanical factors at play during different stages of the dis-
ease. Eccentric (lengthening) contraction injury contributes
to selective quadriceps involvement in DMD (Edwards
et al. 1984). High usage and attendant necrosis of muscles,
as with the tongue and certain flexors, early in life seems to
result in a disordered regenerative response and hypertrophy.
Data from the GRMD cranial sartorius (CS) muscle suggests
that initial enlargement results from increased muscle mass
(true hypertrophy) followed by deposition of connective tis-
sue and fat ( pseudohypertrophy) (Kornegay et al. 2003,
2012b). Individual patient/animal and muscle phenotypic
variation must be considered when targeting DMD lesions
or disease mechanisms.

Mdx Mouse

The mdx mouse has a spontaneous nonsense point mutation
in exon 23 (Sicinski et al. 1989). Although genetically ho-
mologous to DMD, this model is not analogous, with affected
mice having a relatively mild phenotype. After undergoing an
acute wave of muscle necrosis at 3 to 5 weeks of age (Bulfield
et al. 1984; Gillis 1999), mice largely recover and do not ex-
perience substantial clinical dysfunction until approximately
18 months of age (Lefaucheur et al. 1995). However, affected
mice have progressive histopathologic changes and an ap-
proximately 20% reduction in life span (Chamberlain
et al. 2007).
In keeping with this sequential disease course, Grounds

(2008) has proposed a so-called “two-tier hypothesis” to
explain disease progression in DMD and the mdx mouse.
As discussed further below under recommendations to ensure
consistency among mdx preclinical trials, emphasis has been
placed on the need to develop different therapeutic strategies
for the acute and chronic phases. Drawing parallels to DMD,
the ages in mice and humans have been compared, with 3, 4,
6, and 8 weeks of age in mice roughly corresponding to about

6 months, 10 years, 16 to 18 years, and 20 years for humans,
respectively (Grounds et al. 2008 ). In this sense, the acute
muscle damage in mice at 3 to 5 weeks would correspond
to a much more extended period in DMD boys.

With the mdx mouse and other murine models, transgenic/
gene knock-out technology can be used to further modify the
genotype and associated phenotype (Willmann et al. 2009).
Most notably, the mdx phenotype is exaggerated when the
utrophin gene is knocked-out to produce so-called double
knock-out (dko) mice (Deconinck et al. 1997). Other genes
can be knocked-out or silenced to study their role in disease
pathogenesis. Although double mutants typically have a more
severe phenotype that better models symptoms of DMD, the
second mutation introduces a biochemical or biologic diffe-
rence that could affect the disease course independent of
the absence of dystrophin. Knock-out technology also allows
specific DMD gene mutations to be produced, as with target-
ing exon 52, to create models to better explore therapeutic
strategies like exon skipping (Aoki et al. 2012; Araki
et al. 1997).

Reasons for the relatively mild mdx phenotype are not well
defined. Bodor and McDonald (2013) have speculated that
signs are more severe in larger species and individuals because
of added stress placed on higher caliber muscle fibers. Grounds
(2008) stressed that growth exacerbates necrosis in muscles
lacking dystrophin and suggested that the proportionally longer
life spans of humans and dogs could allow for additional bouts
of necrosis and fibrosis and a more severe phenotype. Another
factor might be the shorter telomere length and lower telome-
rase activity and associated reduced muscle regenerative capac-
ity in humans and dogs versus mice (see mechanisms
contributing toMuscle Atrophy below). Regardless of the exact
cause(s), the relatively mild mdx phenotype has caused con-
cerns about the degree to which findings will translate to hu-
mans. Additional questions have been raised because of the
mouse’s size and whether variables influenced by scale, such
as cell migration or drug diffusion, can be appropriately mod-
eled (Partridge 2013). As discussed further below, despite
these reservations, international consensus has established the
mdx mouse as the model of choice for preclinical and
proof-of-concept studies, because they have the exactmonogen-
ic biochemical defect present in DMD (Willmann et al. 2009).

To increase consistency of mdx preclinical studies and im-
prove translation to humans, efforts have been made to stand-
ardize selection of mice to be used (genetic background,
gender, etc); husbandry practices (diet, stress, etc); experi-
mental design (age at onset and route and duration of drug ad-
ministration); and outcome parameters (De Luca 2012;
Grounds et al. 2008; Nagaraju et al. 2009; Spurney et al.
2009; Willmann et al. 2012). A recent comprehensive review
of the mdxmouse as a preclinical model (Grounds et al. 2008)
put forth two major recommendations to ensure more
consistent results: (1) Employ basic standard experimental
regimes for preclinical testing. Building on the “two-tier
hypothesis” discussed above, two potential regimes were
recommended. In regime A, treatments would be started at
14 to 17 days of age before the acute wave of necrosis, with
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tissues sampled at 28 days and, potentially, 12 weeks or lat-
er. Regime B would utilize older (> 4 weeks) mice in which
histopathologic changes have stabilized. For sake of these
studies, mice would be exercised to further exacerbate phe-
notypic effects. (2) Employ basic methods to analyse the
preclinical experiments. Longitudinal measurements of
whole body function, ex vivo individual muscle strength, se-
rum creatine kinase, and standardized histopathologic le-
sions should be completed. Willmann et al. (2012) made
somewhat analgous recommendations in a subsequent re-
view. To provide context for the anticipated benefit of an ex-
perimental therapeutic, they also suggested calculating a
“recovery score” by comparing the differential between
treated and untreated mdx and wild-type mice.

In assessing potential biomarkers to be used in the mdx
mouse, Spurney et al. (2009) found that body weight, normal-
ized grip strength, horizontal activity, rest time, cardiac func-
tion measurements, blood pressure, total central/peripheral
nuclei per fiber, and serum creatine kinasewere most effective
for detecting drug-induced changes (Table 1). Given the mild
phenotype of mdx mice, eccentric contraction and exercise
are often used to exaggerate clinical signs. A forced treadmill

protocol to accentuate the phenotype and increase likelihood
of detecting drug effects over a 3- to 6-month trial period has
been recommended (Spurney et al. 2009). Mdx and dko mice
develop cardiomyopathy (Duan 2006; Spurney et al. 2011a)
and respiratory disease (Huang et al. 2011), allowing for pre-
clinical testing of drugs that target the heart (Spurney et al.
2011b, 2011c) and improve diaphragmatic function (Percival
et al. 2012).

GRMD

Numerous canine breeds with dystrophin-deficient muscular
dystrophy have been clinically characterized, but few have
been studied at the molecular level (see Figure 1 above).
We have conducted extensive studies in a dystrophin-
deficient form of muscular dystrophy originally characterized
in golden retrievers (GRMD) (Kornegay et al. 2012a). An
mRNA processing error in GRMD dogs results from a single
base change in the 3′ consensus splice site of intron 6 (Sharp
et al. 1992). Exon 7 is consequently skipped during mRNA
processing. The resulting transcript predicts termination of

Table 1 Outcome parameters that most effectively distinguish drug-induced changes in mdx mice

Test Age (wk) Wild-type (C57BL/10) micea Mdx micea Significance (p value)

Body weight (g) 10–12 22.17 ± 0.96 23.64 ± 1.33 0.0023

38–40 26.93 ± 2.06 27.30 ± 1.50 NS

Grip strength (front)

(normalized KGF/kg)

10–12 5.506 ± 0.274 4.409 ± 0.346 < 0.0001

38–40 5.430 ± 0.722 4.054 ± 0.485 < 0.0001

Grip strength (hind)

(normalized KGF/kg)

10–12 7.273 ± 0.380 6.244 ± 0.466 < 0.0001

38–40 9.189 ± 1.207 8.455 ± 1.067 NS

Horizontal activity 10–12 1650 ± 270.75 1014.10 ± 230.03 < 0.0001

38–40 1394.91 ± 344.50 1326.62 ± 416.72 NS

Rest time(s) 10–12 562.22 ± 8.45 576.50 ± 12.15 0.0012

38–40 569.05 ± 13.17 569.63 ± 20.00 NS

LVID (d) 38–40 3.90 ± 0.14 3.70 ± 0.19 0.0077

LV%FS 38–40 30.63 ± 2.58 27.89 ± 1.86 0.0091

Systolic BP 38–40 79.15 ± 3.08 74.10 ± 8.62 NS

Diastolic BP 38–40 68.54 ± 6.50 50.60 ± 8.36 < 0.0001

Mean BP 38–40 71.85 ± 4.83 58.20 ± 8.08 0.0001

Peripheral nuclei/fiber 38–40 1.33 ± 0.11 1.142 ± 0.151 0.0211

Central nuclei/fiber 38–40 0.010 ± 0.007 0.633 ± 0.152 < 0.001

Total nuclei/fiber 38–40 1.34 ± 0.10 1.77 ± 0.28 0.0029

Serum CK (U/L) 38–40 85.20 ± 74.66 6439.66 ± 2506.59 < 0.001

From Spurney CF, et al. (2009).
aData expressed as mean ± SD.

Abbreviations: BP, blood pressure; CK, creatine kinase; LVID (d), left ventricular diameter in diastole; LV%FS, left ventricular per cent shortening

fraction; normalized, kg of force divided by body weight in kg; NS, not significant.
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the dystrophin reading frame within its N-terminal domain in
exon 8. Compared with mdx mice, dystrophic dogs more
closely mimic the DMD phenotype, with signs occurring
early and progressing. With this said, even some dogs stabi-
lize and live well into adulthood (Ambrosio et al. 2008).
Dystrophic pups are often ineffectual sucklers and exhibit

stunted growth. Some have a particularly fulminant form in
which severe dyspnea can lead to death or necessitate euthana-
sia during the neonatal period. By 6 weeks of age, the pelvic
limbs may be simultaneously advanced and trismus is noted.
Subsequently, dogs develop stilted gait; atrophy of particularly
the truncal, temporalis, and certain extensor muscles; a planti-
grade stance due to hyperextension of the carpal joints and
flexion at the tibiotarsal (TTJ) joints; excessive drooling, sug-
gesting pharyngeal muscle involvement; and initial lumbar
kyphosis that progresses to lordosis (Figure 2). Whereas
most muscles atrophy, some, such as the CS and tongue, hyper-
trophy (Kornegay et al. 2003, 2012b). Respiratory and cardiac
involvement occurs and can be objectively assessed (DeVanna
et al. 2014; Fine et al. 2011; Su et al. 2012). To partially explain
variable disease involvement, Valentine et al. (1988) suggested
that homozygous females and smaller dogs might have milder
signs. Analogous moderation of signs in female mdx mice has
been attributed to estrogen effects (Salimena et al. 2004).
Bodor and McDonald (2013) cited Valentine’s work, as well
as a tendency for smaller beagle crosses with the GRMD mu-
tation to have a less severe phenotype (Shimatsu et al. 2003;
Yugeta et al. 2006), in making a case that size is a major con-
tributor to disease severity in DMD and the animal models.

Nonetheless, in assessing outcome parameters in our own
GRMD preclinical studies, we did not find differential disease
involvement in homozygous females and larger dogs
(Kornegay et al. 2012a). Still, efforts should be made to bal-
ance gender and size in treatment groups.

The experimental design, outcome parameters, and sample
size must be carefully considered to achieve significance in
GRMD preclinical studies, especially in light of phenotypic
variation. Clinical signs of GRMD progress particularly rap-
idly between the ages of 3 and 6 months. Thus, somewhat
akin to the mdxmouse, the natural history of GRMD provides
a relatively short window over which therapies can be
assessed. Comparative longevity studies for dogs and humans
suggest that the first year of a golden retriever’s life roughly
equates to 20 years of a human (Patronek et al. 1997). By
extrapolation, the 3- to 6-month age in a GRMD dog would
correspond to 5 to 10 years of a DMD boy, a period over
which symptoms also progress markedly (Brooke et al.
1983; McDonald et al. 1995). Avariety of outcome parame-
ters, in many cases modeled after analogous procedures used
to assess DMD patients and mdx mice, has been developed
(Table 2) (Kornegay et al. 2012a). Efforts have been made
to standardize methods used for these procedures in dogs in
parallel with those for mice (Nagaraju et al. 2009). For our
own natural history studies, we have generally collected
data at 3 and 6 months of age to be in sync with the period
used for preclinical studies. To counter the effects of pheno-
typic variation on data analysis, baseline ( pretreatment)
values should first be established at 3 months and compared

Figure 2 Homozygous female GRMD dog (Jelly) at 6 years of age. Note the characteristic plantigrade stance, most noticeably carpal
hyperextension and glossal hypertrophy.
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with those at the end of treatment. In this way, the relative lon-
gitudinal effect of systemic treatments can be established. For
local (intramuscular) or regional (single limb) approaches, the
opposite untreated limb can serve as a control. Although in-
dependent control groups for each preclinical trial should ide-
ally be assessed, budgetary and animal number limitations
may necessitate the use of natural history controls.

Loss of ambulation is the defining clinical feature of DMD
and could logically be used to characterize disease phenotype
in GRMD. However, although occasional severely affected
dogs lose the ability to walk, most remain ambulatory. We
have used tetanic torque/force generated by TTJ flexion/
extension as a key outcome parameter in GRMD dogs
(Kornegay et al. 1999). Our original natural history study
suggested that measurement of flexion torque would be
most useful to document therapeutic benefit in GRMD
dogs. Groups of 15 and 5 were necessary to demonstrate dif-
ferences of 0.2 and 0.4 in the means of treated and untreated

GRMD dogs at 6 months of age, with associated powers of
0.824 and 0.856, respectively. The use of flexion as an out-
come parameter is complicated by a relative recovery of
strength between 3 and 6 months. Extension values in this
initial study varied more markedly, necessitating larger group
sizes to establish significance. Since this original study, we
have more carefully monitored inbreeding coefficient in se-
lecting sire-dam pairs. As a result, the overall phenotype
has been less severe and not as variable. In a subsequent
trial of prednisone in GRMD dogs, we demonstrated thera-
peutic benefit of approximately 60% (p < 0.05) for extension
force using a group size of six GRMD dogs (Figure 3). Inter-
estingly, there was a paradoxical decrease in flexion force,
which we attributed to reduced early necrosis that would
otherwise lead to functional flexor hypertrophy. Consistent
with this interpretation, there were reduced numbers of fetal
myosin positive myofibers, indicating reduced regeneration.
Another study of GRMD dogs treated with prednisone and

Table 2 Outcome parameters in GRMD dogs

Test Age (mo) Normal dogs GRMD dogs

Significance

(p value) Reference

Body weight (kg) 3 10.65 ± 1.75 7.47 ± 1.21 < 0.01 Kornegay et al. 1999

6 20.24 ± 2.30 12.86 ± 3.08 < 0.01

12 23.17 ± 1.70 18.23 ± 3.22 < 0.01

TTJ tetanic flexion

(normalized N/kg)

3 0.486 ± 0.142 0.200 ± 0.094 < 0.01 Kornegay et al. 1999

6 0.825 ± 0.256 0.469 ± 0.183 < 0.01

12 1.10 ± 0.27 0.550 ± 0.200 < 0.01

TTJ tetanic extension

(normalized N/kg)

3 2.55 ± 0.28 1.32 ± 0.43 < 0.01 Kornegay et al. 1999

6 2.95 ± 0.53 0.965 ± 0.506 < 0.01

12 2.98 ± 0.28 1.34 ± 0.58 < 0.01

Speed (m/sec) 2 1.77 ± 0.29 1.02 ± 0.24 0.001 Barthélémy et al. 2011

9 2.61 ± 0.18 0.88 ± 0.46 <0.0001

Stride length/height at withers 2 1.97 ± 0.26 1.35 ± 0.27 0.0001 Barthélémy et al. 2011

9 1.99 ± 0.06 0.92 ± 0.31 <0.0001

LVID (d) (cm)a 3 3.0 ± 0.0 2.5 ± 0.2 < 0.01 Fine et al. 2011

6 3.6 ± 0.1 2.9 ± 0.1 < 0.01

12 4.1 ± 0.2 3.2 ± 0.1 < 0.01

Fraction shortening (%)a 3 36.9 ± 2.5 35.0 ± 1.2 NS Fine et al. 2011

6 33.7 ± 0.5 39.3 ± 2.6 NS

12 32.3 ± 1.7 38.8 ± 6.5 NS

EKG lead 2

Q/R ratioa
3 0.2 ± 0.0 0.4 ± 0.1 < 0.01 Fine et al. 2011

6 0.3 ± 0.0 0.7 ± 0.0 < 0.01

12 0.3 ± 0.0 0.6 ± 0.1 < 0.01

Serum CKb 2 days 700 (200–800)c 18,900 (2,300–39,500) ND Valentine et al. 1988

6 wk 300 (200–500) 8,200 (6,500–162,100) ND

6 400 (400–400) 32,400 (30,300–42,100) ND

Listed tests were assessed longitudinally and are at least somewhat analogous to those of Mdx mice in Table 1.

Abbreviations: CK, creatine kinase; LVID (d), left ventricular diameter at diastole; ND, not determined; N/kg, Newtons/kg; TTJ, tibiotarsal joint;

NS, not significant.
aCardiac data were from GRMD dogs crossbred with Labrador retrievers carrying a different DMD gene mutation.
bCK results for CXMD (GRMD) dogs were from male “small breed” dogs.
cMedian and range for CK values.

126 ILAR Journal



cyclosporine found a similar decrease in flexion force
(Barthélémy et al. 2012).
As with DMD, results of GRMD functional tests track and

correlate with each other (Kornegay et al. 2011, 2012a;
Nghiem et al. 2013). Dating to our early phenotypic studies,
we have been intrigued with the relationship between the TTJ
angle and torque generated by extension and flexion of this
joint. These values have also been placed in the context of

CS muscle hypertrophy. Mildly affected dogs have propor-
tionally larger TTJ angles and tetanic extension torques and
smaller CS circumferences and tetanic flexion torques at
6 months of age. The opposite pattern is seen in severely af-
fected dogs. Given the prominent role that the 6MWT now
plays in DMD clinical trials, we have begun assessing this
metric in GRMD dogs and correlating results with other func-
tional outcome parameters. Providing precedent for applying

Figure 3 Tetanic force in prednisone-treated GRMD dogs. Note the reverse pattern for extension and flexion. For extension (A), a trend for
increased force at 1 mg/kg becomes significant at 2 mg/kg. Flexion is similar (B) but values are decreased. *p < 0.05 compared with normal.
Data are from Liu et al. 2004.
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the 6MWT to canine studies, abnormalities have already been
shown in dogs with heart (Boddy et al. 2004) and respiratory
(Swimmer and Rozanski 2011) disease. In our experiments,
dogs are first conditioned/trained for several sessions begin-
ning at approximately 8 wks of age and then evaluated at
2-week intervals. Our preliminary data indicate that affected
dogs walk shorter distances than normal/carrier dogs.

The GRMD cardiomyopathy has a later clinical onset than
the skeletal muscle phenotype, with, as an example, echocar-
diographic changes not being seen until at least 6 months of
age and often considerably later (Kornegay et al. 2012a).
Thus, ideally, for determining drug effects on the dystrophic
heart, dogs should be older when entered into preclinical trials,
or the cardiac phenotype should be exaggerated by stressing
the heart, as with dobutamine (Maruo et al. 2007; McEntee
et al. 1998). A membrane-sealing poloxamer was shown to
be beneficial using group sizes of four each treated and untreat-
ed 13- to 18-month–old GRMD dogs that had been challenged
with dobutamine (Townsend et al. 2010). The differential be-
tween poloxamer- and saline-treated dogs varied from approx-
imately 50% to 100% for the physiologic indices tested in these
dogs. Another study of the peptide, bradykinin, showed nor-
malization of most cardiac indices using four and five untreated
and treated 11-month–old GRMD dogs (Su et al. 2012) (see
Muscle Fibrosis below).

Optimization of Animal Model Use for DMD
Preclinical Trials

As discussed above and in greater detail below for treatments
targeting DMD, preclinical studies in animal models often
have failed to translate to humans. To optimize translation
of findings from the mdx mouse and GRMD models to
DMD patients, the following points should be considered:

• Design powered studies with sample sizes sufficient to de-
tect drug effects with the outcome paramaters used.

• Follow randomization and blinding procedures, including
who is blinded and when.

• Provide details of the statistical methods used for data anal-
ysis and report all the results for each analysis.

• Develop reliable and sensitive primary and secondary end-
points for the animal model used.

• Independently validate drug efficacy results in another
laboratory.

• Validate drug efficacy in two species (e.g., mdx mice and
GRMD dogs for DMD) whenever possible and especially
with treatments that carry substantial risk.

DMD Treatment Development

Potential treatments for DMD may be broadly categorized
as genetic, cellular, or pharmacologic (Foster et al. 2012;
Konieczny et al. 2013; Malik et al. 2012; Ruegg 2013). In
the context of pharmacologic approaches, some drugs promote

stop codon read-through, correct frame-shift mutations, or up-
regulate surrogate proteins. Others target specific pathogenetic
mechanisms that contribute to the dystrophic phenotype.

Genetic Therapies

Genetic and cell-based therapies, in principle, offer the
possibility of cure. Genetic strategies have included adeno-
associated virus (AAV)-mediated insertion of truncated dys-
trophin transgenes, antisense oligonucleotides to induce
exon skipping and reestablish the dystrophin reading frame,
agents to read-through stop codon mutations, and replace-
ment of dystrophin at the sarcolemma with surrogates such
as utrophin. Animal models have been important to establish
potential efficacy and safety. In the case of AAV-mediated
mini-/micro-dystrophin transgene therapy, foundational stud-
ies in the mdx mouse (Wang et al. 2000; Yuasa et al. 1998)
were extended to the GRMD (CXMD) model (Kornegay
et al. 2010;Wang et al. 2007; Yuasa et al. 2007). Canine exper-
iments have demonstrated long-term dystrophin protein ex-
pression and highlighted the potential for immunologic
rejection of viral capsid antigens and/or dystrophin acting as
a neoantigen (reviewed in Kornegay et al. 2012a).

Antisense Oligonucleotide-Induced Exon Skipping
and Chimeraplasty

Although viral-mediated gene replacement (augmentation) is
a logical approach to therapy, other methods rely on innate
systems intended to repair mRNA or remove introns to
form the transcript. The basis for applying antisense therapies
to DMD resides in the observation that BMD patients have
in-framemutations that allow production of truncated, partially
functional dystrophin proteins (Bushby et al. 1993; Malhotra
et al. 1988). Pioneeringwork by Louise Nicholson demonstrat-
ed that truncated isoforms of dystrophin, apparently produced
through transcript alternative splicing, occur in DMD patients
(Nicholson 1993a; Nicholson et al. 1993b). Alternatively
spliced dystrophin isoforms have also been demonstrated
in mdx mice (Chamberlain et al. 1993) and GRMD dogs
(Schatzberg et al. 1998). As a corollary, so-called revertant
fibers, which express dystrophin, occur spontaneously in
DMD (Arechavala-Gomeza et al. 2010) and both animal
models (Kornegay et al. 2003; Pigozzo et al. 2013).
Antisense oligonucleotides are designed to complement

specific pre-mRNA sequences so that targeted exons are re-
moved (spliced, skipped) at the level of the spliceosome, re-
establishing the reading frame (Chen and Cheng 2012;
Summerton and Weller 1997). Strategies were developed
principally in the mdx mouse (Mann et al. 2001) and then ap-
plied to dystrophic dogs (Bish et al. 2012; Vulin et al. 2012;
Yokota et al. 2009, 2012) before moving to DMD. Efficacy of
different oligomer sequences and chemical backbones
was first established in each species using cultured muscle
cells (Arechavala-Gomeza et al. 2007; Mann et al. 2001;
Vulin et al. 2012; Yokota et al. 2009). Trials in DMD patients
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have relied on two principal antisense oligomer chemistries,
2′O-methylribooligonucleoside-phoshophorothioate and
phosphorodiamidate morpholino oligomers (morpholinos),
marketed, respectively, by Glaxo-Smith-Kline/Prosensa
(drisapersen) (Goemans et al. 2011) and Serepta (eteplirsen)
(Cirak et al. 2012). Each oligomer targets exon 51, a notable
DMD gene hot spot involved in approximately 13% of cases.
Despite promising initial results in DMD patients, the drisa-
persen trial was recently stopped because of concerns about
efficacy (Hoffman and Connor 2013). The eteplirsen trial
continues. Methods to improve delivery of the antisense
peptides and, therefore, achieve wider skeletal muscle and
cardiac effects, as well as increase the duration of efficacy,
are needed (Benedetti et al. 2013; Betts and Wood 2013;
Partridge 2010).
An analogous method, termed chimeraplasty, employs chi-

meric oligonucleotides to induce normal host cell mismatch
repair mechanisms to correct single nucleotide point muta-
tions (Graham and Dickson 2002). Chimeric oligonucleo-
tides injected intramuscularly into a single dystrophic dog
achieved correction of the GRMD mutation and expression
of a normal-sized dystrophin protein for 48 months (Bartlett
et al. 2000). Chimeraplast-mediated exon skipping also was
demonstrated in the mdx mouse (Bertoni et al. 2003). Despite
these successes, inconsistencies in chimeraplasty studies for
other diseases have dampened enthusiasm for this approach
(de Semir and Aran 2006).

Stop-Codon Read-Through

An alternative genetic strategy for DMD employs drugs, such
as gentamicin, that selectively promote translational read-
through of premature stop codons (Hirawat et al. 2007;
Nudelman et al. 2009). This therapeutic strategy applies to
the approximately 15% of DMD patients who have nonsense
mutations (Dent et al. 2005) resulting from single nucleo-
tide DNA polymorphisms that give rise to in-frame UAA,
UAG, or UGA codons in messenger RNA coding regions.
These stop codons lead to premature termination of protein
translation, with resultant truncated, nonfunctional proteins.
Gentamicin was initially shown to increase dystrophin read-
through in the mdx mouse, first using cultured myotubes and
then moving to in vivo studies, where treated mice expressed
dystrophin in muscle and had functional improvement
(Barton-Davis et al. 1999). Subsequent gentamicin treatment
of DMD patients harboring stop codons provided mixed
results, with one study failing to show full-length dystrophin
protein or functional improvement (Wagner et al. 2001)
and another demonstrating dystrophin protein expression
(Politano et al. 2003).
Because of concerns regarding potential toxicity of higher

dose or longer duration gentamicin regimens, a high-
throughput, screening tool was developed to identify chemical
compounds with equal efficacy and high safety profiles. This
process led to the discovery of PTC124, subsequently called
ataluren, which is chemically distinct from aminoglycosides.

Ataluren suppressed DMD gene nonsense mutations in mdx
muscle cell culture and led to dystrophin expression and func-
tional improvement in mice treated systemically (Welch et al.
2007). These encouraging results prompted DMD trials with
ataluren, starting with Phase 1 studies in healthy volunteers
that showed no toxicity and extending to Phase 2 trials in
DMD patients. The DMD trials have generated inconclusive
results. Whereas the initial Phase 2a study demonstrated dys-
trophin expression in about one-third of the treated patients,
the larger 2b study showed only marginal 6MWT benefit and
did not include dystrophin protein expression data (Hoffman
and Connor 2013; Peltz et al. 2013).

Dystrophin Surrogates (Utrophin)

A number of proteins colocalize with dystrophin at the sarco-
lemma and could serve as surrogates (Nghiem et al. 2013). As
examples, upregulation of GalNAc transferase (Martin et al.
2009) and sarcospan (Peter et al. 2008) ameliorated the mdx
phenotype. Particular interest has focused on utrophin
(dystrophin-related protein), the autosomal isoform of dystro-
phin (Fairclough et al. 2011; Miura and Jasmin, 2006), with a
number of factors suggesting that it could have therapeutic ben-
efit in DMD. Normally expressed chiefly at the neuromuscular
synapse and myotendinous junction (Khurana et al. 1991;
Nguyen et al. 1991), utrophin moves extrajunctionally towards
the muscle belly in the absence of dystrophin (Karpati et al.
1993; Nguyen et al. 1991) and is upregulated in DMD
(Karpati et al. 1993; Mizuno et al. 1993), the mdx mouse
(Law et al. 1994), and the GRMD (Nghiem et al. 2013;Wilson
et al. 1994) and German shorthaired pointer (Schatzberg et al.
1999) dog models. Mdx mice, in which utrophin is knocked
out (dko mice), have a more severe phenotype (Deconinck
et al. 1997). Upregulation of utrophin, either genetically
(Tinsley et al. 1996) or through treatment with the small mol-
ecule SMTC1100 (Tinsley et al. 2011), improves the mdx phe-
notype. High-throughput, cell-based screens have been used to
identify drugs that upregulate utrophin (Moorwood et al. 2013).
Treatment of mdx mice with recombinant human biglycan, an
extracellular matrix protein associated with the dystrophin-
glycoprotein complex, recruits utrophin to the sarcolemma
and reduces histopathologic lesions and the degree of eccentric
contraction decrement (Amenta et al. 2011). Adenovirus-
mediated utrophin therapy reduced histopathologic lesions in
GRMDdogs (Cerletti et al. 2003). However, other canine studies
have not validated a role for utrophin in improving phenotype.
Utrophin was not differentially expressed in mildly and severely
affectedGRMDdogs (Zucconi et al. 2010) or in the less-severely
affected German shorthaired pointer model (Schatzberg et al.
1999). Although utrophin was increased in the spared/
hypertrophied GRMD CS muscle, levels did not correlate
with the degree of muscle hypertrophy (Nghiem et al. 2013).

Cell Therapies

As with genetic approaches, cell based-therapies provide an
opportunity to replace dystrophin, achieving a relative cure.
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In light of the loss of muscle mass with chronic disease, cell
replacement also offers the potential to reverse muscle atro-
phy (Meregalli et al. 2013). Studies of myoblasts and their
parent satellite cells (Briggs and Morgan 2013) have been
complemented by experiments utilizing stem cell populations
in both the mdx (Benedetti et al. 2013) and GRMD (Rouger
et al. 2011; Sampaolesi et al. 2006) models, with some
approaches moving to human trials (Benedetti et al. 2013).

Drug Target Identification

There are numerous hurdles with gene and cell-based thera-
pies. As examples, viral vector constructs or cell populations
may be rejected immunologically, and older affected individ-
uals have chronic, essentially irreversible muscle loss. There-
fore, although these approaches will remain a major focus of
research, additional emphasis has been placed on develop-
ment of therapeutic strategies that target downstream disease
mechanisms. In the early days of DMD treatment develop-
ment, there were three main hypotheses for disease pathogen-
esis. Over and above the membrane theory that was ultimately
substantiated, considerable support existed for neurogenic
and vascular mechanisms (Rowland 1976). Interest in these
other two theories was driven, in large part, by the nature
of histopathologic changes, namely myofiber atrophy and
central nuclei in keeping with denervation (McComas et al.
1970, 1988) and small group myofiber necrosis typical of
muscle ischemia (Mendell et al. 1971). From these early
days and extending to the present, pharmacologic targets

principally have been identified based on the nature of path-
ologic lesions (Figure 4) and underlying pathogenetic mech-
anisms. Here, we discuss treatment strategies in the context of
the progression of DMD lesions, extending from acute necro-
sis to fibrosis with atrophy.

Myofiber Necrosis

Membrane lesions in DMD are generally thought to allow
leakage of calcium, with activation of proteases like calpain,
leading to necrosis (accidental cell death) (Miller and
Girgenrath 2006). Apoptosis (programmed cell death) medi-
ated through the ubiquitin proteasome system (UPS) also
may play a role in DMD pathogenesis (Tidball et al. 1995).
Accordingly, pathways associated with necrosis and apopto-
sis are potential drug targets in DMD (De Paepe and De
Bleecker 2013) (see discussion of calpain and UPS inhibitors
as potential therapies under Muscle Atrophy below). Indeed,
dystrophin surrogates and poloxamer-based therapies, which
have been efficacious in both the mdx mouse (Ng et al. 2008;
Spurney et al. 2011c) and GRMD dog (Townsend et al.
2010), are intended to repair membrane injury.
The membrane theory for DMD pathogenesis derived, in

part, from the overlapping nature of histopathologic changes
like hyaline fiber necrosis (Figure 4B) seen in both DMD
and nutritional myopathies resulting from reduced levels of
the antioxidants vitamin E and selenium (Clark 1984; Kakulas
1975; Serafin et al. 1987). However, muscle lesions are not typ-
ically seen in vitamin E-deficient humans (Binder et al. 1965),

Figure 4 The histologic appearance of normal canine muscle (A) is contrasted with characteristic progressive histopathologic lesions of GRMD
(B–D). (B) Several myofibers are swollen/hypercontracted (hyalin necrosis), and two myofibers are mineralized (calcified). The endomysial
space is relatively normal. (C) Two small groups of myofibers have undergone necrosis and there is an associated inflammatory cell infiltrate.
The endomysial space is mildly expanded. (D) The endomysial space is markedly expanded due to both fibrosis and fatty deposition. Individual
myofibers are enlarged and many have central nuclei. H&E stain and 20 × original magnification for all.
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and antioxidant treatment has not been beneficial in DMD pa-
tients (Bäckman et al. 1988; Gamstorb et al. 1986). Moreover,
vitamin E supplementation did not substantially improve the
mdx mouse phenotype (Hübner et al. 1996). With this said,
there is continued interest in the role of oxidants in DMD path-
ogenesis, and oxidative stress remains a target for therapeutic
intervention (Arthur et al. 2008; Lawler 2011). Pentoxifylline
(Burdi et al. 2009), N-acetylcysteine (Whitehead et al. 2008),
green tea extract (Nakae et al. 2012; Evans et al. 2010), and
idebenone (Buyse et al. 2009) are examples of compounds
with antioxidant properties shown to benefit mdx mice (see
further the role that some of these compounds have in inhibit-
ing the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) pathway under Muscle Inflammation below).
In a subsequent clinical trial of idebenone, DMD patients had
improved indices of respiratory (expiratory) function and a
trend toward increased cardiac contractility (Buyse et al.
2011). Angiotensin-converting-enzyme (ACE) inhibitors
have several potentially beneficial effects in muscle, with
one being reduction of oxygen radicals (Cozzoli et al. 2011),
and are a current standard of care for DMD cardiomyopathy
(see further under Muscle Fibrosis below).
Mitochondrial dysfunction and associated failed energy

metabolism have been implicated in DMD pathogenesis, act-
ing in concert with reactive oxygen species and altered calci-
um homeostasis (Godin et al. 2012). The mitochondrial
permeability transition pore (PTP), whose induction can
lead to mitochondrial swelling and cell death by apoptosis,
has become a key therapeutic target (Rasola and Bernardi
2007). In particular, treatments have targeted cyclophilin D,
which regulates PTP opening in response to calcium and reac-
tive oxygen species (Giorgio et al. 2010). Treatment of mdx
mice with the cyclophilin inhibitor, Debio-025, reduced mito-
chondrial swelling and light microscopic histopathologic le-
sions (Millay et al. 2008). Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1α) is another target
because of its role in activities beneficial to mitochondrial
function, including reduced PTP opening, increased mitochon-
drial mass, and improved calcium handling (Godin et al. 2012),
as well as upregulation of utrophin (Angus et al. 2005). Injection
of an AAV6-PGC1α construct in mdx mice led to upregulation
of utrophin and improved functional and histopathological indi-
ces (Hollinger et al. 2013b). Treatment of mdx mice with two
agents, AICAR and GW50156, that increase expression or are
activated by PGC1α, also improved mitochondrial function
and phenotype (Jahnke et al. 2012).
An additional therapeutic approach to reduce muscle necro-

sis harkens back to the vascular theory of DMD pathogenesis
and relates to the loss of neuronal nitric oxide synthase
(nNOS) due to the absence of dystrophin and instability of its
associated membrane complex. Without nNOS, muscle blood
flow is reduced (Chang et al. 1996; Thomas et al. 1998), likely
contributing to the characteristic grouped myofiber necrosis
of both ischemia and DMD. Pharmacological enhancement
of nitric oxide–cyclic guanosine monophosphate signaling
pathways with phosphodiesterase 5 inhibitors, as with sildena-
fil, enhanced nNOS activity and improved the mdx phenotype

(Percival et al. 2012). Despite these promising results, a clinical
trial in which sildenafil was assessed for its potential benefits
in DMD and BMD cardiomyopathy has suspended patient re-
cruitment (http://clinicaltrials.gov/ct2/show/NCT01168908?
term=sildenafil&rank=32).

Myofiber Calcification

Numerous studies have focused on the role of calcium ho-
meostasis in DMD pathogenesis. This is a logical extension
of studies of mitochondrial function and oxygen reactive spe-
cies given the interrelated role that these factors have in cell
function. Although calcium has a nonspecific role in numer-
ous cell injury pathways, histopathologic studies have shown
that levels are increased in muscle biopsies from DMD pa-
tients more so than other myopathies (Bodensteiner and
Engel 1978). Muscle injury in the mdx mouse is associated
with increased entry of calcium through channels activated
by reactive oxygen species (Allen et al. 2010), providing po-
tential targets for therapy. An analogous increase in calcium is
seen pathologically in GRMD muscle (Figure 4B) (Valentine
et al. 1989). Creatine supplementation of mdx muscle cell
cultures improved calcium handling and promoted formation
and survival of myotubes (Pulido et al. 1998). Benefits of the
tricyclic antidepressants, imipramine and amitriptyline, in
mdx mice were explained, in part, by effects on calcium ho-
meostasis in skeletal muscle (Carre-Pierrat et al. 2011). On the
other hand, mdx mice treated with dantrolene, which inhibits
the release of calcium from the sarcoplasmic reticulum, did not
show benefit (Quinn et al. 2013). Perhaps most importantly, a
Cochrane review of DMD clinical trials found calcium antag-
onists had no useful effect (Phillips and Quinlivan 2008).

Muscle Inflammation

Myofiber necrosis in DMD (McDouall et al. 1990), the mdx
mouse (Carnwath et al. 1987), and GRMD dog (Figure 4C)
(Kornegay et al. 1988; Valentine et al. 1990) elicits a mixed
inflammatory cell response, with macrophages and lympho-
cytes predominating. Macrophages were originally thought
to play principally a phagocytic role. They are now seen as
having a dual purpose, with M1 macrophages occurring
acutely to phagocytize cell debris, followed closely by M2
macrophages to drive myofiber regeneration (Kharraz et al.
2013; Tidball and Villalta 2010). A complex set of cytokines
(tumor necrosis factor, interkeukins, transforming growth
factor beta [TGFβ], and osteopontin [OPN]) (De Paepe and
De Bleecker 2013; Evans et al. 2009) and transcription fac-
tors (NF-κB, E2F1) (Blanchet et al. 2012; Chen et al. 2005;
Peterson et al. 2011) are involved in DMD pathogenesis.

The cytokine OPN is particularly intriguing in that mRNA
levels are increased in DMD (Chen et al. 2000) andmdxmouse
(Porter et al. 2003) muscle (also see mRNA arrays discussion
below). OPN is secreted by inflammatory cells and myoblasts
and servesmultiple, at times seemingly contradictory, functions
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in diseased muscle. Expression has been linked to increased fi-
brosis in the mdx mouse (Vetrone et al. 2009) and enhanced
muscle regeneration in a murine injury model (Uaesoontra-
choon et al. 2013). Moreover, the same OPN promoter poly-
morphism is associated with greater disease severity in DMD
(Bello et al. 2012; Pegoraro et al. 2011) and enhanced muscle
mass in normal human females (Hoffman et al. 2013).Working
with theHoffman laboratory, we have demonstrated that OPN is
also dramatically increased in muscle from GRMD dogs (Fig-
ure 5), with levels negatively correlating with CS muscle size
(PP Nghiem, JN Kornegay, K Uaesoontrachoon, L Bello, LW
Fisher, Y Yin, ZWang, AKesari, PMittal, SJ Schatzberg, NH
Lee, EP Hoffman, unpublished data). Multiple factors, in-
cluding stage of disease and isoform types, probably contrib-
ute to these differing effects of OPN.

With regard to transcription factors, research has focused
on the NF-κB pathway, which exacerbates muscle lesions
and dysfunction in DMD and the mdx mouse (Acharyya
et al. 2007; Monici et al. 2003). Treatments targeting
NF-κB are of particular interest in DMD, because prednisone
blocks this pathway (Auphan et al. 1995). A number of com-
pounds that inhibit the NF-ĸB pathway have been shown to

benefit the mdx mouse (Figure 6) (Table 3). As an example,
inhibiting NF-κB signaling with Nemo Binding Domain
(NBD) peptide alleviates dystrophic histopathologic lesions
and improves muscle function in DMDmouse models (Delfin
et al. 2011; Peterson et al. 2011). We have collaborated with
the Guttridge laboratory at The Ohio State University on a
study of NBD in GRMD dogs, employing a previously per-
formed treatment protocol and biomarker analysis (Liu et al.
2004). Consistent with observations in mice, NBD treatment
in GRMD dogs exhibited an efficacious response, providing
further support for its potential use as a DMD therapeutic
(JN Kornegay, DCGuttridge, unpublished data). Importantly,
studies have linked NF-κB and OPN in a number of disease
processes in which inflammation and fibrosis occur. For in-
stance, OPNmediates activation of the NF-κB pathway in he-
patic fibrosis (Urtasun et al. 2012) and relapsing episodes of
multiple sclerosis (Steinman 2009). On the other hand,
NF-κB induction of OPN may contribute to fibrosis in myo-
cardial infarction (Zhang et al. 2010). Both molecules were
increased, and levels correlated positively, in synovial fluid
of osteoarthritis patients (Qin et al. 2013). These findings sug-
gest that NF-κB and OPN may be interrelated through a

Figure 5 Heat map depicting supervised hierarchical clustering in GRMD dogs. A total of 485 genes correlated with OPN expression in
72 mRNA expression profiles from normal and GRMD CS, long digital extensor (LDE), and vastus lateralis (VL) muscles (Nghiem et al.
2013) at 4 to 9 weeks and 6 months. All mRNA profiles were correlated with OPN mRNA expression, and the top correlated genes (r≥ 0.9;
p ≤ 0.001; 485 genes) are depicted here. Note that the OPN-correlated genes (1) have minimal to no expression in normal muscle profiles, (2)
increase in expression with age in GRMD profiles, (3) increase in expression in the more affected GRMD muscles at the respective time point,
and (4) are variably expressed even within muscles.
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feedback loop (Zhang et al. 2010). Accordingly, treatments
inhibiting the NF-κB pathway (Figure 6, Table 3) likely exert
their effect, in part, through reduced OPN expression. Other
downstream OPN effectors would also be potential therapeu-
tic targets (Jain et al. 2007). The statin drug, simvastatin, re-
duced expression of NF-κB, OPN, and collagen I in a rat
model of myocardial infarction and could have therapeutic
value in DMD (also see discussion of Muscle Fibrosis
below). More specific OPN targeting using humanized anti-
bodies directed against OPN isoforms involved in particular
diseases also has shown promise (Dai et al. 2010; Fan et al.
2008, 2011). Further definition of OPN isoforms involved in
DMD and subsequent antibody targeting warrants further
investigation.
Aside from macrophages, other inflammatory and immune

cells play important roles in the pathogenesis of DMD and
the mdx and GRMD models (Evans et al. 2009; Iannitti et al.
2010; Tidball and Villalta 2010). Mast cells are associated with
areas of myofiber necrosis in all three conditions, suggesting
that released proteases could contribute to cell injury (Gorospe
et al. 1994). DMD patients and GRMD dogs had more persis-
tent degranulation, perhaps allowing prolonged release of
mediators (heparan sulfate, tryptase) that would enhance fibro-
sis. Cromolyn administration to block mast cell degranulation

reduced myofiber necrosis in mdx mice (Radley and Grounds
2006). Populations of CD4 and CD8-positive lymphocytes
have also been seen in DMD (Engel and Arahata 1986), mdx
mice (Spencer et al. 2001), and GRMD dogs (Barthélémy et al.
2012), further highlighting involvement of the immune system
in disease pathogenesis. Of particular note, dystrophin, serving
as a neoantigen in revertant fibers, may induce a lymphocytic
response in DMD (Flanigan et al. 2013). Depleting immune
cell populations and general immunosuppressant regimens
have improved the mdx phenotype (Evans et al. 2009; Iannitti
et al. 2010; Vetrone et al. 2009). Recent studies by Nagaraju’s
laboratory demonstrated that proinflammatory innate immune
receptors such as toll-like receptors (TLRs) on muscle and im-
mune cells play an important role in dystrophic lesions in mdx
mice (Henriques-Pons et al. 2014). Knockout of the central
TLR adaptor protein, myd88, in mdx mice improved skeletal
and cardiac muscle function. Likewise, preclinical trials
in young mdx mice with a TLR7/9 antagonist significantly
reduced skeletal muscle inflammation and increased muscle
force, demonstrating that inhibiting this pathwaymay have ther-
apeutic potential for DMD.

Given the role of inflammation in disease pathogenesis, it is
tempting to speculate that prednisone’s benefit in DMD and
somewhat mixed effects in the mdx mouse (Guerron et al.

Figure 6 NF-κB inhibitors tested in mdx mice. Inhibition of the NF-κB pathway, utilizing mechanisms illustrated here, has shown phenotypic
benefit in the mdx mouse (also see Table 3).
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2010; Sali et al. 2012) and GRMDdog (Barthélémy et al. 2012;
Liu et al. 2004) occur, at least partially, from reduced inflamma-
tion. In support of this, mdx mice treated with prednisone had
reduced inflammatory cell numbers and adhesion while show-
ing reduced sarcolemma damage and myofiber degeneration-
regeneration (Wehling-Henricks et al. 2004). Dystrophic dogs
given prednisone alone or with cyclosporine generally show
an improved phenotype but have increased numbers of calcified
myofibers, potentially due to a reduction ofmacrophage activity
(Barthélémy et al. 2012; Liu et al. 2004). Interestingly, DMD
patients treated with another antiinflammatory agent, azathio-
prine, did not have a comparable beneficial effect despite sup-
pression of the same inflammatory cell populations, suggesting
mechanisms other than immunosuppression are involved
(Griggs et al. 1993; Kissel et al. 1993). Similarly, numbers of
CD4 and CD8-positive cells in GRMD dogs treated with the
prednisone-cyclosporine regimen were comparable with those
in untreated GRMD controls (Barthélémy et al. 2012). Al-
though prednisone has a well-established catabolic effect on
protein, treated DMD patients have a net increase in muscle
mass, thought to occur through decreased muscle proteolysis
versus increased protein synthesis (Rifai et al. 1995). But, pred-
nisolone also promotes myogenesis, with associated utrophin
upregulation, in mdx myoblast cultures (Passaquin et al.
1993). Other compounds, like VBP15 (Heier et al. 2013) and
a proprietrary drug (Compound A) (Huynh et al. 2013), which
have been extensively studied in theHoffman andNagaraju lab-
oratories, benefit the mdx mouse through inhibition of the

NF-ĸBpathway (Figure 6) (Table 3),without side effects of glu-
cocorticoid receptor stimulation. Importantly, OPN levels were
decreased in mdxmice treated with Compound A but increased
in those receiving prednisone (Huynh et al. 2013).

Muscle Fibrosis

Fibrosis is readily seen histologically in DMD (Pearce and
Walton 1962) and the mdx (Stedman et al. 1991) and
GRMD (Figure 4D) (Kornegay et al. 1988; Valentine et al.
1989) models. Increased endomysial connective tissue occurs
early in DMD and correlates with clinical disease progression
(Desguerre et al. 2009). Mediators of fibrosis, therefore, are
logical therapeutic targets (Klingler et al. 2012). Attention
has centered on TGFβ, which is involved in fibrosis in
DMD (Bernasconi et al. 1995), the mdx mouse (Gosselin
et al. 2004), and GRMD dog (Passerini et al. 2002). As dis-
cussed above under Muscle Inflammation, NF-ĸB induction
of OPN also may contribute to fibrosis in myocardial infarc-
tion (Zhang et al. 2010), providing an additional potential tar-
get for therapy. Angiotensin activates or increases expression
of TGFβ (Morales et al. 2012), NF-κB (Muller et al. 2000),
and OPN (Remus et al. 2013). Accordingly, ACE inhibitors
can provide benefit at several levels and are recommended for
DMD patients at the onset of cardiac clinical dysfunction
(Spurney 2011d). Studies in mdx mice have suggested that
ACE inhibitors may also benefit skeletal muscle and that

Table 3 NF-κB therapeutic approaches tested in the mdx mouse

Intervention Pathology Function Reference

AAV-p65-shRNA Yes No Yang et al. 2012

Nemo Binding Domain Peptide Yes Yes Delfin et al. 2011; Peterson et al. 2011

Nemo Binding Domain Peptide Yes Yes Reay et al. 2011

AAV-IKKa-dn or -IKKbdn Yes No Tang et al. 2010

Pyrollidine Dithiocarbamate Yes No Carlson et al. 2005; Graham et al. 2010;

Messina et al. 2006a

Ursodeoxycholic Acid (UDCA) Yes Yes Siegel et al. 2009, 2011

Curcumin Yes Yes Pan et al. 2008

Curcumin No Yes Durham et al. 2006

Flavocoxid Yes Yes Messina et al. 2009

IRFI-042 Yes Yes Messina et al. 2006b

Genistein Yes Yes Messina et al. 2011

Green Tea Extract Yes No Evans et al. 2010

L-Arginine Yes No Hnia et al. 2008

L-Glutamine Yes No Mok et al. 2008

N-Acetylcysteine Yes No Whitehead et al. 2008

VBP-15 Yes Yes Heier et al. 2013

TLR-7/8 Antagonist Yes Yes Henriques-Pons et al. 2014

134 ILAR Journal



treatment during the preclinical stage of DMD could be indi-
cated (Cozzoli et al. 2011). Early treatment of mdx mice with
the ACE-inhibitor, lisinopril, together with the aldosterone
inhibitor, spironolactone, reduced fibrosis and improved
function of both cardiac and skeletal muscle (Rafael-Fortney
et al. 2011). In other studies, treatment of mdx mice with the
angiotensin II receptor antagonist, losartan, reduced fibrosis
in the heart and skeletal muscles (Bish et al. 2011a; Cohn
et al. 2007; Spurney et al. 2011b). Although the cardiac phe-
notype was improved, functional benefit in skeletal muscle
varied. Treatment of GRMD dogs with the vasodilator pep-
tide, bradykinin, which is degraded by ACE and increased
by ACE inhibitors, improved a number of cardiac functional
parameters (Su et al. 2012). TGFβ-inhibitors, acting through
different mechanisms, have shown variable effects in the mdx
mouse, with some demonstrating functional and/or patholog-
ic benefit (Cohn et al. 2007; Nelson et al. 2011; Taniguti et al.
2011) and others showing only minimal effects (Gosselin
et al. 2006, 2007). Thus, ACE inhibitors and angiotensin
receptor blockers have a clear indication in reducing cardiac
fibrosis and potential analogous benefit in skeletal muscle.

Muscle Atrophy

All of the lesions/mechanisms discussed above, extending
from necrosis to fibrosis, contribute to muscle wasting and
the ultimate atrophy (sarcopenia) that characterizes DMD
(Shin et al. 2013). Analogous changes occur in the mdx
mouse and GRMD models. However, the dramatic muscle
wasting seen in DMD does not occur until late in mdx
mice, when muscles are approximately one-half normal size
(Lefaucheur et al. 1995). In contrast, atrophy occurs earlier in
GRMD (Kornegay et al. 2003; Valentine et al. 1990). Neither
mdx mice nor GRMD dogs show the same degree of fatty
deposition seen in DMD. Reasons for these species differenc-
es are not clear. Anderson et al. (1993) found higher expres-
sion of basic fibroblast growth factor in the mdxmouse versus
DMD patients and GRMD dogs. Given that basic fibroblast
growth factor promotes proliferation of muscle precursor cells
(Abdel-Salam et al. 2009), they speculated this could explain
the greater regenerative response in mdx mice.
Muscle regeneration is dependent on differentiation of resi-

dent satellite cells to myoblasts, which fuse to form myotubes
and, ultimately, new myofibers (Briggs and Morgan 2013).
Cellular proliferation is facilitated by telomeres, regions near
the ends of chromosomes that deter degradation of genes dur-
ing chromosome replication (Bojesen 2013). The enzyme tel-
omerase is necessary for addition of DNA sequence repeats to
the telomere (Holysz et al. 2013). Muscle atrophy in DMD is
associated with satellite cell senescence (Heslop et al. 2000;
Jejurikar and Kuzon 2003; Webster and Blau 1990) and telo-
mere shortening (Decary et al. 2000). Species variation in nor-
mal telomere length and telomerase activity could account for
the more severe phenotype of DMD and GRMD versus the
mdx mouse. Cells of humans and dogs have relatively short
telomeres, in the 5- to 15-kb range, and low telomerase activity

(Argyle and Nasir 2003; Cross et al. 1989). Mice have consid-
erably longer telomeres, in the 20- to 70-kb range and as long
as 140 kb (Kipling and Cooke 1990), and proportionally high-
er telomerase activity (Prowse and Greider 1995). Lending
support for this mechanism of phenotypic variation is the
fact that knocking out the mdx mouse telomerase gene results
in more severe signs (Sacco et al. 2010).

Muscle atrophy in DMD could result from either increased
protein degradation or reduced production (Griggs and
Rennie 1983). An early study completed before dystrophin
was identified, and drawing somewhat on protein data from
nongenetic animal models available at the time, concluded
that DMD resulted from reduced production versus degrada-
tion (Rennie et al. 1982) (also see effects of prednisone under
Muscle Inflammation above). Of course, with DMD gene mu-
tations, there is inherent reduced production of stable dystro-
phin protein. Genetic therapies are directed at restoring
dystrophin and, in turn, additional members of the dystrophin-
glycoprotein complex. Other approaches are less selective and
involve the use of anabolic agents and hormones. Much atten-
tion has focused on the anabolic hormone, insulin-like growth
factor, which promotes muscle hypertrophy by activating the
phosphatidylinositol 3-kinase/Akt pathway and, in turn,
mTOR and further downstream targets. Insulin-like growth
factor was among a group of compounds that improved the
mdx phenotype in one preclinical screen using whole-body
strength as an outcome parameter (Granchelli et al. 2000)
and increased force generation in miniature bioartificial mdx
muscles in an ex vivo system (Vandenburgh et al. 2009). On
the other hand, mdx mice made transgenic for insulin-like
growth factor developed muscle hypertrophy only during peri-
ods of muscle regeneration subsequent to bouts of necrosis
(Shavlakadze et al. 2010). An additional study showed benefit
in mdx mice treated early but not those with more chronic in-
volvement or in dko mice (Gehrig et al. 2012). As discussed
above under Muscle Inflammation, prednisone has a net ana-
bolic effect on muscle. A novel androgen receptor modulator,
GLPG0492, improved both functional and pathologic bio-
markers in mdx mice (Cozzoli et al. 2013).

Inhibition of the UPS and calpain systems, which con-
tribute to muscle degradation in DMD, has been proposed
as a treatment based largely on evidence that activities of in-
volved enzymes are elevated in the mdx mouse and that
blockade can improve their phenotype (Badalamente and
Stracher 2000; Bonuccelli et al. 2007; Spencer et al. 1995;
Spencer and Mellgren 2002). In support of this hypothesis,
systems involved in protein degradation are misregulated in
the muscular dystrophies (De Palma et al. 2012; Sandri
et al. 2013). Moreover, a defect in autophagy in mdx mice,
associated with abnormal Akt and mTOR signaling, was re-
versed by a low-protein diet, with reduced histopathologic
changes and improved function (De Palma et al. 2012). Ad-
ditionally, proteasome inhibition restored members of the
dystrophin-glycoprotein complex in DMD muscle explants
and reduced the severity of histopathologic lesions in mdx
mice (Gazzerro et al. 2010). But, other mdx mouse studies
failed to show efficacy for either calpain inhibition (Selsby
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et al. 2010) or overexpression of an antiapoptosis protein
(Dominov et al. 2005). Similarly, we were unable to demon-
strate benefit of a novel calpain inhibitor in GRMD dogs
(Childers et al. 2012). In a separate collaboration with the
Willis laboratory at the University of North Carolina-Chapel
Hill, mRNA expression of UPS and calpain system compo-
nents and calpain 1 and 2 and proteasome activities were
measured in several GRMDmuscles and the heart at 6 months
of age (Wadosky et al. 2011). A majority of muscles had de-
creased levels of proteasome activity, and only one-half had in-
creased calpain activity. More alarmingly, numerous UPS
components were decreased in the heart. Taken together, these
results do not support pharmacologic inhibition of the UPS and
calpain systems in DMD and suggest that there could be unin-
tended deleterious consequences.

Another strategy for reversing muscle atrophy involves
inhibition of the myostatin gene (growth/differentiation factor
8), which serves as a key negative regulator of muscle growth
(Lee 2004; McPherron et al. 1997). Mdx mice in which
myostatin is knocked out (Wagner et al. 2002) or postnatally
inhibited (Wagner et al. 2005) have a less severe phenotype.
In collaboration with the Xiao Xiao laboratory at the Univer-
sity of North Carolina-Chapel Hill, we showed that regional
limb AAV8-mediated overexpression of the inhibitory myo-
statin propeptide enhanced muscle growth in normal dogs
(Qiao et al. 2009). A similar systemic approach generated
analogous results in GRMD dogs evaluated by the Sweeney
laboratory at the University of Pennsylvania (Bish et al.
2011b). In an effort to validate the mdx mouse-myostatin
knockout studies, we crossbred dystrophin-deficient GRMD
dogs with whippets carrying a spontaneous two-nucleotide
myostatin gene deletion (Mosher et al. 2007). Surprisingly,
rather than showing improvement, the dystrophic myostatin-
heterozygous GRippet dogs were more severely affected than
their dystrophic myostatin-wild type littermates (JN Kornegay,
DJ Bogan, JR Bogan, JL Dow, J Wang, Z Fan, LC Warsing,
RW Grange, M Ahn, Z Zhu, MA Styner, KRWagner, unpub-
lished data). Disproportionate enlargement and atrophy/hypo-
plasia of certain muscles appeared to lead to postural instability
and joint contractures in the GRippets.

An antibody intended to reduce myostatin’s activity was
assessed in adult muscular dystrophy patients, including
some with BMD (Wagner et al. 2008). While no safely issues
were seen, the trial was not sufficiently powered to show clin-
ical efficacy.

Pharmacogenomic Drug Targeting

The present low rate of translation of pharmacologic therapies
between animal models and their human counterparts high-
lights a strong need for better, more effective ways to extract
meaningful information from cross-species studies. Part of
the solution, undoubtedly, lies in increasing experimental rig-
or and transparency in animal experiments, as outlined above.
A critical paradigm shift in designing and interpreting studies
requires expanding the perception of animal models to

“many-to-many” rather than “one-to-one”when investigating
their correlations with the human diseases they model. It’s
also important to note that species differences often reflect
individual differences within a species. Another piece of
the puzzle likely will be based on moving from the pathologic
lesion/pathogenetic mechanism approach that has traditional-
ly been used to identify drug targets to one that is based more
in specific gene/protein targets that have been clearly associ-
ated with disease phenotype (Hoffman et al. 2003). Towards
this end, gene expression profiling studies have been pub-
lished for DMD, the mdx mouse, and, more recently,
GRMD dogs. Correlations across species can be interpreted
when comparing profiles built using analogous tissues and
conditions. In this way, gene expression profiles from differ-
ent species can illustrate the similarities and differences in
species-specific responses to pharmacologic agents of inter-
est. These comparisons give insight into the relevancy of
each animal model and its applicability for investigating spe-
cific aspects of human disease pathogenesis and treatment
(Yu et al. 2012). Ultimately, these studies should provide a
better understanding of disease pathogenesis and identify
molecular therapeutic targets, with cross-species relevance,
to modify or arrest disease progression (Barrie et al. 2012).

mRNA Arrays

Remarkable phenotypic variation occurs among dystrophin-
deficient species that share the same genetic lesion. Similar
differences occur among individuals and muscles within a
species, raising questions about primary versus secondary
effects of dystrophin deficiency (Hoffman and Gorospe
1991; Porter et al. 2003). Microarray gene expression profiling
and follow-up protein studies in DMD and dystrophin-
deficient animals have provided insight into how genes other
than dystrophin modify the disease phenotype. Porter et al.
(2003) showed that differential gene expression in the mdx
mouse is closely associated with the degree of individual mus-
cle involvement and longitudinal disease progression. Differ-
ential gene expression was far more pronounced in more
severely affected limb muscles compared with the relatively
spared extraocular muscles. Temporal gene expression mea-
surements in limb muscle were associated with distinct stages
of disease (e.g. development) and different gene ontologies.
Gene expression differences between normal and affected
mice early in the disease were associated with inflammation,
proteolysis, and the extracellular matrix/fibrosis pathways. Fur-
thermore, these differences tracked with the progression of his-
topathologic changes. Specific reference was made to a
potential role for OPN in disease pathogenesis. A later paper
compared gene expression between an mdx limb muscle and
the diaphragm, which shows more progressive disease (Porter
et al. 2004). Overall, gene expression patterns were similar,
suggesting that general diseasemechanisms are shared between
both tissues. With this said, evidence of differential gene ex-
pression pointed to disease processes that are potentially tissue
specific. As an example, the diaphragm showedmore persistent
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expression of genes tied to muscle regeneration, in keeping
with progressive disease. Thus, again, the microarray expres-
sion data tracked well with disease phenotype.
Tseng et al. (2002) compared mRNA expression in the

mdx mouse at 16 weeks of age, when the disease is relatively
quiescent, with previously published array results from 6- to
9-year-old DMD boys with ongoing disease (Chen et al.
2000). They found several genes that could account for the
less-severe mdx phenotype. Most notably, mRNAs for actin-
related proteins and mast cell chymase were upregulated in
mdx mice versus DMD patients. Actin-related proteins might
stabilize the dystrophic myofiber membrane, whereas mast cell
chymase activates matrix metalloproteinases involved in colla-
gen degradation. In addition, the expression levels of certain
genes involved in mitochondrial function and energy metabo-
lismwere downregulated inDMD, potentially contributing to a
so-called “metabolic crisis” in affected patients, but unchanged
in mdx mice, relative to control samples. Finally, mRNA for
myostatin was decreased 4-fold in mdx mice (myostatin was
also downregulated in DMD, but data were not discussed).
In an extension of their earlier study, Chen et al. (2005)

assessed gene expression in three DMD age groups: fetal, pre-
symptomatic infant (8–10 months), and symptomatic 5- to
12-year olds. Genes involved in inflammation and muscle
regeneration were upregulated in the fetal group, and this
increased gene expression persisted in the older patients. TLR
and NF-ĸB pathway genes were upregulated even in presymp-
tomatic infants, whereas expression levels of TGFβ and major
histocompatibility complex (MHC) genes were higher in the
5- to 12-year-old group. On the other hand, a cluster of genes
associated with metabolism was downregulated, in keeping
with the proposed “metabolic crisis” of DMD. Pathways poten-
tially involved inmusclewasting/atrophywere also queried. Al-
though the AKT1/atrogin ubiquitin ligase pathway has been
implicated in a number of muscle-wasting disorders, it was
not activated in any DMD age group. Similarly, while blocking
myostatin to enhance muscle regeneration has been logically
proposed as a therapy for DMD, myostatin levels were already
downregulated in symptomatic patients, and the myostatin in-
hibitor, follistatin, was increased in all three age groups.
An additional DMD array study found differential expres-

sion, mostly upregulation, of genes involved in inflammation,
muscle regeneration, and cell signaling (Haslett et al. 2002).
These authors commented that gene expression patterns
largely paralleled histopathological lesion progression, pro-
viding credence for the traditional approach used to identify
drug targets. In particular, OPN was markedly upregulated
and there were less pronounced increases in biglycan and
TGFβ. Another paper from this group emphasized that genes
involved in cell signaling, particularly survival cascades,
were differentially expressed in DMD (Haslett et al. 2003),
thus bringing attention to an important, but somewhat over-
looked, role of the dystrophin glycoprotein complex.
A recent meta-analysis of DMD mRNA array data largely

confirmed conclusions reached through earlier published studies
(Baron et al. 2011). In particular, differentially expressed genes
fell largely into two clusters, namely overexpressed genes cod-

ing for proteins involved in extracellular cell-matrix adhesion
and inflammatory-immune response and underexpressed genes
coding for mitochondrion proteins. The meta-analysis validated
published observations that differentially expressed genes large-
ly reflect infiltrating inflammatory cells and proliferating con-
nective tissue and that the patterns of gene expression
correspond to major pathological features of DMD.

Protein studies in GRMD dogs have identified abnormali-
ties in energy metabolism (Guevel et al. 2011) and signaling
(Feron et al. 2009) consistent with those defined by gene ex-
pression microarrays in DMD. Extending those studies, we
have assessed mRNA microarrays in tandem with real time
quantitative reverse transcription PCR (qRT-PCR) and protein
expression (proteomic profiling,Western blotting, and immuno-
histochemistry) to define the molecular basis for phenotypic
variation and, in particular, CS hypertrophy in GRMD dogs
(Nghiem et al. 2013). Notably, we found that CS size was in-
versely correlated with myostatin expression in 6-month-old
GRMD dogs. Utrophin mRNAwas upregulated in the CS,
but levels did not correlate with size. Using a quantitative trait
analysis, we queried mRNAs that strongly correlated with CS
hypertrophy at 6 months. A total of 250 transcripts were entered
into Ingenuity Pathway Analysis (Redwood City, CA) software
to determine molecular networks associated with CS hypertro-
phy. The top-ranked pathway included genes coding for two
dystrophin-associated mRNAs, namely dystrophin-associated
glycoprotein 1 (DAG1) and LARGE enzyme responsible for
O-linked glycosylation of DAG1. DAG1 qRT-PCR expression
values directly correlated with CS circumference at 6 months,
validating the microarray data and suggesting that DAG1 may
support CS hypertrophy. Spectrin was identified as an additional
potential dystrophin surrogate via proteomic profiling. The
growth factor myotrophin was also increased in the CS, imply-
ing that it might play a role inmuscle hypertrophy. Taken togeth-
er, these data indicated that multiple factors, includingmyostatin
downregulation, upregulation of potential dystrophin surrogates
DAG1 and spectrin, and increased expression of the growth fac-
tor myotrophin are involved in CS hypertrophy.

In another collaboration with colleagues at Vanderbilt
University, we have studied mRNA arrays from skeletal and
cardiac muscle at three different ages (6 and 12 months and
4–8 years) of separate groups of GRMD dogs. Preliminary
data demonstrate a substantial downregulation of many skel-
etal muscle genes associated with metabolism in the younger
dogs but not the other two groups. Thus, GRMD dogs seem
to undergo a “metabolic crisis” akin to that of DMD patients
and then recover to some extent (CLGalindo, CLBrinkmeyer-
Langford, LW Markham, JH Soslow, JN Kornegay, DB
Sawyer, unpublished data).

GWAS

GWAS are used to identify genetic markers (typically single
nucleotide polymorphisms [SNPs]) that may be associated
with complex traits (Edwards et al. 2013; Hou and Zhao,
2013). GWASoffer a powerful tool to identify common genetic
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variants that mark regions of the genome to correlate with phe-
notypic variation in DMD. Genes within these regions may
play a role in the manifestation of the phenotype, making
them potential targets for drug therapy. The GRMD model is
well suited to complement DMD studies (Brinkmeyer-Lang-
ford and Kornegay 2013). Completion of a draft sequence of
the canine genome has provided data for the design of SNP
chips to support canine GWAS to define the genetic bases
for phenotypic features in dogs, including, as an example,
the wide variation in canine skull shapes (Schoenebeck and
Ostrander 2013). We have utilized GWAS to identify SNPs as-
sociated with individual variation for phenotypic markers in
age-matched normal and GRMD dogs. For sake of these stud-
ies, the focus has been on the association between TTJ flexion
and extension torque values and genetic profiles of the in-
volved cranial tibialis and medial head of the gastrocnemius
muscles (Figure 7) (Brinkmeyer-Langford and Kornegay
2013). Several candidate genes marked by SNPs associated
with phenotypic diversity are currently being validated.

Gene expression profiling using microarrays (or RNA
sequencing) works in tandem with GWAS to elucidate the
genetic background underlying phenotypic variation in
DMD and its animal models. The types of information gen-
erated by these two distinct, yet complementary, methods
should be used concurrently to provide a multifocal, integrat-
ed pathway toward identifying drug targets. GWAS data show
the extent to which a particular region of the genome (and the
genes therein) are statistically associated with some pheno-
type of interest, thus providing context but not insight
into the mechanism affected; gene expression data cannot
directly give context to the differentially expressed genes but
can show pathways that are variably affected and, thereby, pro-
vide insight into possible mechanistic effects. Together, both
GWAS and gene expression microarray paint a holistic picture
of the genetic factors influencing phenotypic variation.

The template offered by Plenge et al. (2013) in their recent
review of drug target identification should be carefully consid-
ered when using GWAS and other genetic studies to identify
potential drug targets. The review cited a number of human
genes for which alleles (often a SNP) associated with disease
phenotype. These were identified using various biochemical,
genetic linkage, and GWAS methods. Plenge et al. (2013)
stressed that certain criteria must ideally be fulfilled in identi-
fying gene-drug pairs in drug discovery (Figure 8). Although
not cited in the review, the protein OPN offers a contemporary
example relevant to DMD. As discussed above under Muscle
Inflammation, an OPN promoter polymorphism is associated
with a more severe phenotype in DMD (Bello et al. 2012;
Pegoraro et al. 2011) and enhanced muscle mass in normal hu-
man females (Hoffman et al. 2013). OPN was identified as a
candidate gene by correlating DMD functional and gene ex-
pression data. Confidence in OPN’s relevancy was provided
by (1) an established high rate of spontaneous human polymor-
phisms (Giacopelli et al. 2004) and their association with dis-
ease (Chiocchetti et al. 2004), (2) the influence that the same
polymorphism had on normal human muscle mass, and (3) the
association of increased OPN expression with disease in the
mdx mouse. Therapeutic strategies to target OPN, both non-
specifically as with NF-κB inhibition and, potentially, with
humanized antibodies, could have benefit in DMD.

Epigenetics

The numerous SNPs identified through GWAS account for
only a small proportion of phenotypic variation in complex
diseases (Butcher and Beck 2008). Nongenetic factors encom-
passed by the field of epigenetics play an additional major role
in disease pathogenesis. Epigenetics has traditionally been de-
fined as the study of “heritable changes in gene expression that
are not due to changes in DNA sequence” (Eccleston et al.

Figure 7 Data fromGWAS and gene expression microarrays help to identify trends that provide important clues for drug development. Panels A
and B illustrate that the same gene (“Gene A”) may have distinct effects on a particular biomarker (here, force) in different muscles (“Muscles A
and B”). (A) Expression of Gene A positively correlates with force values in GRMD and normal (unaffected) dogs. (B) Expression of Gene A
only minimally correlates with force values (if at all), though higher values are still clearly found in unaffected dogs. Therefore, Gene A ex-
pression levels are distinct in the two different muscles from which RNAwas extracted. This suggests that Gene A could be considered as a
therapeutic target in Muscle A but not Muscle B.
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2007). Bird offered a more contemporary definition of “the
structural adaptations of chromosomal regions so as to register,
signal or perpetuate altered activity states” (Bird 2007). The ep-
igenome consists of chemical agents that modify, or mark, the
genome, but are separate from the DNA itself. Effects of epi-
genetics are principally achieved by DNA and histone modifi-
cations that enhance or suppress gene expression (Barros and
Offenbacher 2009). Epigenome-wide association studies are
done to determine whether differences in histone and/or
DNA modifications are associated with a trait (Michels et al.
2013). Any agent that interferes with the normal programming
of the epigenome can interfere with activities of the affected
gene(s) and their downstream targets. In some cases, drugs tar-
geting the epigenome can be used to restore normal function,
for example, by inhibiting DNAmethyltransferase and histone
deacetylase to enable the transcription of affected genes
(Baer-Dubowska et al. 2011). Relevant to this review, epige-
netic cues likely are important in driving differentiation of
stem cells during muscle regeneration, potentially dictating
whether pleuripotency is maintained or cell death and fibrosis
occur (Giordani and Puri 2013). Puri and his colleagues have
shown that histone deacetylase inhibitors promote muscle
regeneration and reduce fibrosis in mdx mice (Consalvi et al.
2013) and have suggested that this effect is mediated through
inhibition of fibroadipogenic progenitors while promoting
differentiation of satellite cells (Mozzetta et al. 2013).

Conclusions

Pharmacologic approaches have been used to increase DMD
gene expression and enhance production of dystrophin surro-
gates. Drugs that target genes downstream from the primary
biochemical defect are also critically needed to lessen DMD

disease morbidity and mortality. Unlike many genetic diseas-
es for which animal models are lacking, the mdx mouse and
GRMD dog provide homologous models in which disease
pathogenesis and therapeutic efficacy can be tested. However,
just as with other disease states, data derived from these mod-
els do not uniformly translate to DMD patients. This failure of
translation likely occurs due to both physiologic differences
between animals and humans and the lack of sufficient rigor
in preclinical studies. With regard to preclinical studies, more
care should be taken in experimental design to include ran-
dom assignment of animals to treatment groups, blinding of
data assessment, greater attention to power analysis of out-
come parameters used to establish benefit, and increased
stringency in data handling. Consideration should also be giv-
en to applying criteria of the “Animal Rule” to therapy devel-
opment, especially if treatments carry substantial risk.
Pharmacologic approaches have typically targeted character-
istic pathologic changes, such as necrosis, inflammation, and
fibrosis. But, although the mdx and GRMDmodels are genet-
ically homologous to DMD, they are not analogous. Differ-
ences in histologic changes and disease progression
undoubtedly reflect disparate pathogenetic mechanisms
among species. New assays provide a means to better identify
genes/drug targets more closely tied to disease pathogenesis,
especially if genetic changes correlate with objective pheno-
typic outcome parameters. Genes, such as OPN, in which
polymorphisms have been shown to affect the DMD pheno-
type are particularly attractive targets for therapy.
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