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Critique of Shreesh Mysore’s
Attention Selection
Experiments in Owls




Shreesh Mysore, an assistant professor in the Department of Psychological & Brain Sciences
at Johns Hopkins University (JHU), who has received National Eye Institute (NEI) grant
#RO1EY027718, purports to study the neural correlates of sensory selection and stimulus
prioritization in humans by performing harmful and problematic brain experiments on barn
owls. To this end, he holds barn owls captive in a JHU laboratory, where they are restrained
for hours at a time, subjected to multiple invasive surgical procedures, bombarded with
visual and auditory stimuli while being held in a head fixation device, and ultimately killed.
He performs craniotomies on the owls in order to insert brain recording equipment and/or
tubes to deliver drugs into the brain. His methods cause the owls permanent brain damage.

Mysore attempts and fails to justify subjecting owls to these extremely harmful procedures
by claiming that data from these experiments can provide valuable information about
sensory processing, attentional mechanisms, and attention deficit disorders in humans

and that these data cannot be obtained through more humane methodology. However, as
reviewed in detail below, critical species differences in sensory and attentional processes,
the negative effects of captivity on normal brain function and behavior in birds, and the
complexity of human attention and human attention disorders severely limit the usefulness
of these experiments. Rather, these experiments are flawed in both design and execution
and do not contribute to our understanding of sensory and attentional processing in
humans. Additionally, there are more effective and relevant non-animal research tools
available that can further our knowledge of attention mechanisms in humans.

Sensory Selection Processes in Humans and Owls are Ecologically,
Neurologically Distinct

There are critical differences in the sensory anatomy between owls and humans that make
any inferences drawn about similarities in sensory responsivity across the two species likely
inaccurate. Owls have very different sensory, sensory selection, and selective attention
requirements and mechanisms, and they depend on distinctive sensory input. Unlike humans,
barn owls are nocturnal predators with the capacity to detect prey and avoid predators in
complete darkness using only auditory information. Their phenomenal auditory localization
skills are in part due to a unique asymmetry of their outer ears and the ruff of sound
reflective feathers that help direct sound to the ear
openings,’ features obviously not found in humans.
Similarly, unlike humans, owls’ visual systems, including
arod dominated retina, are designed to work under
low light conditions, sacrificing spatial resolution for
maximum light sensitivity.? Compared to other species,
barn owls’ eye movements are very restricted, and
unlike humans and other mammals, they make head
movements rather than eye movements when tracking
prey.® In sum, owls have adapted specializations in
sensory processing apparatus and mechanisms that
are designed to meet their species specific needs

and that differ significantly from sensory processing
mechanisms in humans.
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It is well established that stimulus selection in humans
depends largely on critical top down and bottom up
interactions between higher cortical areas, primary sensory
cortices, and subcortical regions in the brain.*5678.910
Humans engage higher cortical areas in order to attend
selectively to stimuli based on reward expectations, ™2
immediate or long term goals,*™ learned values of novel
stimuli,”s and learned predictiveness of stimuli'® and for self
regulation and performance monitoring.”'® The existence
of similar cortically mediated “executive control” of sensory
stimulus attention and selection in avian species is currently
undocumented and is not being investigated or even
considered in Mysore’s experiments on owls. The stimulus-
selection processes and neuroanatomical regions he is
attempting to assess involve only the subcortical optic tectum and inferior colliculus of the
owls’ brains and thus will add little value to our understanding of more complex cortically
mediated human attention and stimulus-selection systems.

Sensory Selection and Attention Cannot Be Accurately Measured in
Owls in a Laboratory

It is well known that the general laboratory environment and routine experimental
procedures cause acute and chronic stress in animals.”® Additionally, studies of birds

in captivity have documented marked changes in stress hormone production?® and,
subsequently, immmune system dysfunction in response to the laboratory environment.?.22.23
The effects of captivity and laboratory induced acute and chronic stress are not just
ethically unacceptable; they also introduce serious disruptions to normal behavior and
neurological structure and function in birds. For example, alterations in stress hormone levels
are known to affect birds’ cognitive abilities,?* including spatial learning and memory.2526.27.28.29
Similarly, hyperinflammation, documented in captive birds, is a known mediator of brain
function and cognition in humans and animals.3°33233 The impact of chronic and acute stress,
elevated circulating stress hormones, and anxiety on goal directed attentional processes in
animals is also well documented.343536:37.38.39

The effects of chronic and acute stress on captive birds’ sensory processing abilities
confound any attempts to draw conclusions about typical selective attentional processing

in owls. Additionally, owls held in a laboratory setting do not experience the natural visual,
auditory, and spatial information of the natural world. Restrictions in space, alterations in
lighting, and limited or experimentally controlled visual and auditory input will alter the
organization of the neural networks that process this information. It is well established that
artificially manipulating barn owls’ visual and auditory experience affects the development
and organization of the visual and auditory localization maps in the inferior colliculus as well
as critical projections between the inferior colliculus, the optic tectum, and the isthmi pars
tegmentum that Mysore is attempting to study.*0:44243.44 Birds reared in captivity also exhibit
reduced overall brain volume,* reduced brain volume in regions critical for processing spatial
information,*¢ and atypical hippocampal morphology and spatial processing abilities.*7484°
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In other words, the disruption of natural visual and auditory stimulation that occurs in owls
held in Mysore’s laboratory necessarily alters the underlying visual, auditory, and spatial
information circuitry that he is trying to elucidate.

Birds in captivity are prone to neophobia and/or neophilia, reduced anti predatory
behavior, and altered foraging and prey seeking behavior, which, in turn, alters the saliency,
behavioral relevance, and behavioral and neurological response to both natural and artificial
stimuli.595'5253 Attempting to understand the species-typical sensory selection processes
in owls housed or reared in an unnatural environment and exhibiting atypical behavior

in response to sensory input that is no longer behaviorally relevant or salient is both
unproductive and misleading.

Mysore knows his experiments are hopelessly flawed. At a September 2, 2020, seminar at
Albert Einstein College of Medicine, he admitted that experimenting on owls in a head fixed
position could be misleading, stating:

Almost all the work in attention so far has been done in head fixed
animals, and there are lots of reasons that are emerging now, even
more so than before, indicating that really, if possible, you should be
doing things in freely behaving animals because the way they engage
with the environment, the way locomotion, for instance, affects neuro
responses, is quite significant, and it could change the way the brain
is solving problems, and we might misinterpret what’s happening or
misunderstand if we do this in head fixed animals.>*

Nevertheless, Mysore continues to use millions of taxpayer dollars to torment owls in his
laboratory.

Attention Deficit/Hyperactivity Disorder Is a Complex, Uniquely
Human Condition

Attention deficit/hyperactivity disorder (ADHD) is a complex, highly heritable,
heterogeneous neurodevelopmental disorder with variable cognitive phenotypes, multiple
genetic and environmental risk factors, and frequent psychiatric comorbidities. The age

of onset, developmental course, and responsivity to pharmaceutical and/or behavioral
treatments also vary across individuals with ADHD. Attention deficit/hyperactivity disorder
(ADHD) is a uniquely human condition, with environmental influences experienced only in
humans. Its complex etiology and heterogeneity make it impossible to study in a nonhuman
animal in a laboratory environment.

Moreover, research with humans with ADHD suggests that it is the attentional processes
mediated in higher cortical areas, including top down executive functions such as goal
directed filtering and inhibition processes® and the fronto parietal network, that is
dysfunctional in ADHD,5%5%%€ not the lower level thalamic sensory processing mechanisms
being tested in Mysore’s laboratory.
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Human-Relevant Methods for Studying
Stimulus Selection and Attentional Deficits

The use of animals, particularly in experiments that inflict
considerable harm on them without any concurrent benefits,
is wasteful and unethical. There are superior non-animal
methods for studying attention that hold greater relevancy for
human attention disorders.

I. Neuroimaging Techniques

Neuroimaging techniques including high resolution
anatomical neuroimaging (MRI),% functional neuroimaging
(fMRI),%° single photon emission computed tomography
(SPECT),® diffusion tensor imaging (DTI),%2 positron emission
tomography (PET),%? transcranial magnetic stimulation (TMS),%4
electroencephalography (EEG),%® and magnetoencephalography (MEG)®® are advancing our
understanding of the neural underpinnings of visual, spatial, and auditory attention; stimulus
selection; and disordered attentional processes in humans. It is data from these non animal
research studies that have paved the way for the current pharmaceutical, behavioral, and
TMS based treatments currently used to treat attention deficit disorder (ADD) and that will
continue to pave the way for safe, more effective treatments in the future.

Several research groups are also successfully combining the use of the tools described
below to develop a comprehensive understanding of the complex interplay of structural,

neurochemical, and electrophysiological mechanisms in typical and atypical human attention
networks_67,68.69.70,71,72.73,74.75,76

a. fMRI/MRI/DTI

High resolution fMRI has allowed researchers to study the neural networks involved in a
variety of attentional mechanisms in humans performing species relevant attention mediated
tasks,”” including those requiring sustained attention’87998 attention shifting®283.8485
selective attention®®” and distraction laden target selection®®®® across and within stimulus
modalities. These studies have also successfully deciphered the roles of the superior and
inferior colliculi and lateral geniculate nucleus during visual, spatial, and auditory attentional
processing in humans?®0.9.92:93.94.9596 gnd their interactions with cortical regions during that
processing.®%:98:99100

Structural imaging tools, including high resolution MRI and DTI, have been used to identify
neurological abnormalities associated with ADD'102103104 3nd fMRI has also been used to
identify atypical activity within brain regions during impaired attentional processing in
individuals with ADD.105106.107108109110 These neuroimaging methods have been used to identify
biomarkers for more accurate diagnosis of ADD'™" as well as to clarify the genetic®"4mn516
and environmental™” "8 contributors to ADD. These tools also allow researchers to study the
variability in symptoms™ 0121122 and the impact of different treatments'?®2425 in this population
at the neurological level.
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b. TMS

TMS in humans, which can be used to modulate neural activity in a target brain region, can
now simulate the chemical lesion and induced activation and deactivation studies once
performed on animals. This tool has been used extensively to detail the various roles of
individual neural regions in the attentional networks in humans'26:27:128.129130,131132.33 gnd to
systematically identify the functional and dysfunctional components of attentional networks
in individuals with ADD."** Importantly, these investigations have led to the use of repeated
TMS (rTMS) in healthy individuals and individuals with ADD as a successful method for
improving attentional control 135136157

c. MEG/EEG

The ability to measure and localize electrophysiological responses in humans using EEG and
MEG has provided researchers with an in depth understanding of the time course of different
neural contributions to attentional processes as well as the multi mechanistic nature of
human attention.’3813914041 These tools identified specific atypicalities in the ADD brain during
a multitude of attention related tasks that can be used for better diagnosis and potentially
for the development of new treatments.142143144.145

d. PET/SPECT

PET and SPECT imaging allows researchers to determine the dopaminergic, serotonergic,
nicotinergic, GABAergic, and noradrenergic systems in typical and atypical neurological
functions. These methods have been used to pinpoint both the neuroanatomical and
neurochemical contributors to attentional processes in humans.'#%714¢ Additionally, these
tools have been used to successfully identify the neural correlates of individual variation
within the ADD population.#®15015 PET and SPECT have been used to determine the
dopaminergic,'$215354155 noradrenergic,”®'*” GABAergic,"*® and serotonergic'®*'¢° dysregulation
associated with ADD and to study the effects of pharmaceutical treatment on these systems
in individuals with ADD.16"%62

Il. Computational Models of Attention

Computational and mathematical models have been
instrumental in furthering our understanding of visual
attention. There are numerous models that assist in clarifying
and investigating theories of visual attention using human
relevant tasks and situations. These computational models fall
into two broad categories: those that investigate bottom up
visual attention, which is driven by visual input and saliency
and occurs rapidly, and those that model top down attention,
which is task oriented, based on subjective experience, and
goal oriented.’®® Studies using computational modeling

have successfully described how information from tasks

such as making a sandwich guides eye movements®4 and
how distractions while driving can affect eye movements,'5
as well as other human relevant tasks and functions.
Population receptive field (pRF) computational models have
successfully mapped how clinical conditions such as autism
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and Alzheimer’s can affect attentional networks and plasticity in the visual cortex.’*® These
tools have also been invaluable in elucidating the complex interactions between cortical and
subcortical interactions during auditory and visual stimulus selection in humans'¢7168169170 gnd
in modeling aberrant information processing in ADD."7"172.173

These Experiments May Have Violated Maryland State Law

Not only are the owl experiments at JHU indefensibly cruel and scientifically invalid,
according to state records that we have uncovered, they’re also apparently illegal, and we
note that JHU chose not to dispute this point in an October 7, 2020, Baltimore Sun article.”4

Because Mysore keeps barn owls in his laboratory, he is required by Maryland law to obtain
an annual scientific collection permit from the Maryland Department of Natural Resources
(DNR) to possess protected birds for educational or scientific purposes.”>7¢ However,
public records that PETA received from the DNR show that Mysore does not appear to have
acquired the necessary permits for the period of January 1, 2015, to December 31, 2018. If
corroborated, this means that Mysore may have violated Maryland law and his agreement
with the National Eye Institute, from which he has received more than $1.5 million.

Conclusions

Bombarding sensory deprived, acutely and chronically stressed owls housed in an unnatural
environment with computerized visual and auditory sensory input will not reliably contribute
information of real value to our understanding of the complexity of typical human attention
and its disorders. Moreover, there are more effective non animal research tools available
that other researchers are already effectively using to assess stimulus selection, attentional
processing, and attention deficits in humans. Mysore’s invasive experiments on owls are
uninformative with regard to human health, cruel, and in his own words misleading, and
they should no longer receive taxpayer funding.
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