
 

May 23, 2019 

 

Richard J. Hodes, M.D. 

Director 

National Institute on Aging 

National Institutes of Health 

 

Via e-mail: hodesr@31.nia.nih.gov 

 

Dear Dr. Hodes, 

 

On behalf of People for the Ethical Treatment of Animals (PETA) and our more 

than 6.5 million members and supporters worldwide, I am writing to share 

several ethical and scientific concerns regarding the National Institute on Aging's 

(NIA) new initiative to increase its use of marmoset monkeys to study 

Alzheimer's disease (AD)—and to ask that you reconsider this strategy.  

 

As you know, the failure rate for new AD treatments developed from preclinical 

animal experimentation is exorbitantly high.1,2 Previous NIA endeavors to 

"improve" animal "models" of AD, including the development of multiple 

transgenic animals, have also failed to replicate the human disease faithfully and 

to translate into human treatments.3,4 The most important information gleaned 

from decades of expensive and harmful studies is that using animals to study AD 

cannot predict human efficacy or toxicity, and treatments developed using 

animals will consistently fail to translate into treatments for humans with AD. 

We urge NIA to initiate the transition from animal experimentation to human-

based, human-relevant methods for Alzheimer's research, rather than spending 

millions of dollars subjecting tens of thousands of marmosets and other primates 

to harmful, wasteful experimentation. 

 

AD Is Unique to Humans 

AD is unique to humans, with variable and interacting cognitive and neurological 

symptoms,5,6,7 variable age of onset and progression rate,8,9,10,11 and numerous 

genetic,12,13,14,15 environmental,16,17,18,19 and epigenetic20,21,22 contributors. The 

heterogeneous etiology and symptomatology of AD in humans is impossible to 

recapitulate or measure adequately in a laboratory setting. Experiments designed 

to study AD in animals, including those using primates and/or transgenic 

animals, artificially simulate only one or two symptoms, failing to induce or 

measure critical components of the disease, including the neuronal loss, 

neurofibrillary tangles, tauopathy, rapid cognitive decline, and dementia 

observed in human patients.23,24,25,26,27  

 

Simulating Alzheimer's-Like Symptoms in Primates Involves Invasive and 

Harmful Procedures 

To simulate individual Alzheimer's-like symptoms in primates, experimenters 

induce long-term neuropathology using invasive methods, including intracranial 

injection of amyloid-beta fibrils, 28,29,30 deliberate exposure to toxins,31,32 and 

lesion-induced neural degeneration.33 The proposed NIA initiative to induce AD 
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symptoms in marmosets will not only increase the number of primates subjected to these 

invasive and harmful procedures but also prompt additional ethically questionable 

experimentation on primates, including unestablished and often deadly gene-editing 

procedures.34 

 

Marmosets Are Particularly Sensitive and Vulnerable 

Primates, including marmosets, are highly intelligent, complex, social animals. Those held 

captive in laboratories and subjected to experimental procedures exhibit signs of extreme 

distress, including pacing, rocking, head-twisting, and eating their own feces. Highly traumatized 

primates will bite their own flesh, pull out their own hair, and engage in other forms of severe 

self-mutilation.35,36,37,38 Current standards for social housing and enrichment do not meet 

marmosets' need to problem-solve, forage, climb, and engage in complex social interactions, 

including caring for their offspring.39 The lack of mental and social stimulation, as well as 

exposure to common laboratory procedures, leads to chronic stress that affects primates not only 

psychologically but also physiologically. It is well documented that primates in laboratories 

display aberrant immune system functioning, including increased stress-related hormones, 

dysregulation of the hypothalamic-pituitary-adrenal axis, and depressed immune system 

functioning.40 Additionally, marmosets are prone to bone disease41 as well as a condition known 

as "marmoset wasting disease," a systemic inflammatory disorder that leads to weight loss, 

diarrhea, alopecia, weakness, intestinal inflammation, paralysis, and death.42  

 

In a recent National Academies of Sciences, Engineering, and Medicine workshop dedicated to 

discussing the care, use, and welfare of marmosets in biomedical experiments, experts drew the 

following conclusion: 

 

[Marmosets] have unique requirements in terms of housing, feeding, social 

interactions, and other facets, many of which remain poorly understood. There is 

no standardized diet for captive marmosets, and there are very few people who 

have expertise in working with them. Marmosets in captivity are susceptible to a 

range of diseases and are particularly prone to Marmoset Wasting Syndrome, 

which is not one disease but a perplexing composite of multiple conditions and 

etiologies that could be due to poor nutrition, stress, infection, or a combination of 

these factors. Their breeding and parenting behavior is also poorly understood, 

and although marmosets are easier to handle than tamarins (as they tend to be less 

easily stressed and are more easily habituated to handling), their multiple births 

can lead to poor parenting performance.43  

 

The current lack of knowledge regarding the provision of standard care for marmosets is 

concerning, particularly given that the proposed NIA initiative will not only increase the number 

of marmosets in unprepared laboratories but also introduce unprecedented gene-editing 

procedures for these already at-risk primates.  

 

Compromised Data 

The negative effects of laboratory life on marmosets' mental and physical health are not just 

ethically unacceptable; they also introduce several confounds into experimental data. The altered 

immune system functioning in primates in laboratories and the additional systemic inflammation 

found in captive marmosets are particularly concerning, given the role of immune system 

modulation in AD neuropathology.44,45,46 Coupled with the fundamental species differences in 



gene expression and protein function,47 immune system functioning,48 neurodevelopment,49,50 

neuroanatomy,51,52 age-related changes in hormone production,53 and age-related 

neurodegeneration,54,55 the proposed experiments in marmosets cannot fully or accurately 

represent human AD, and treatments derived from these experiments will fail to be effective in 

human patients. 

 

Conclusion 

For ethical and scientific reasons, emerging research methods designed to prevent and treat AD 

should undergo a transition away from animal experiments and toward the use of modern 

research tools. In vivo imaging in humans with AD or at risk for developing the condition and 

postmortem analysis of brain tissues from patients with AD are helping researchers understand 

the genetic, environmental, and neurobiological underpinnings of the disease.56,57,58,59 Cutting-

edge technology, including AD-derived induced pluripotent stem cell models,60 3-dimensional 

cell-culture models,61,62 systems-level biological computational modeling,63,64 and quantitative 

systems pharmacological modeling,65,66 are being used not only as more accurate and detailed 

models of AD but also, currently, to test drug efficacy and safety.  

 

It is critical that the NIA support research that promises the greatest possible benefit to humans 

with the least possible harm to animals. We urge NIA to reconsider investing valuable financial 

and scientific resources into harmful experiments with marmosets and instead to direct these 

resources toward clinically relevant, human-based research strategies. 

 

Thank you for your consideration of our concerns. May we please meet with you to discuss them 

further?  

 

Sincerely, 

 

 
 

Katherine V. Roe, Ph.D. 

Research Associate 

Laboratory Investigations Department 

People for the Ethical Treatment of Animals 

501 Front St., Norfolk, VA 23510 

KatherineR@peta.org  

240-893-7292 
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