United States Department of Agriculture

Animal and Plant Health Inspection Service

Veterinary Services
Center for Veterinary Biologics

1920 Dayton Avenue P.O. Box 844 Ames, IA 50010
(515) 337-6100

Mr. Jeffrey Brown
Regulatory Testing Division
People for Ethical Treatment of Animals (PETA)
501 Front Street
Norfolk, VA 23510
Dear Mr. Brown:
This is in response to your letter dated August 19, 2009, regarding the application of an in vitro potency test for Erysipelas rhusiopathiae biologics. We appreciate your interest in our biologics program and welcome the opportunity to describe our work in the development of alternatives to animal usage in the potency testing of veterinary biologics.

The Center for Veterinary Biologics (CVB) advocates and supports the development and implementation of in vitro methods for potency testing of veterinary biologics to reduce the use of animals in routine batch testing. This commitment was recently demonstrated when the CVB issued Notice Number 09-20 on August 31, 2009, entitled "Withdrawal of Supplemental Assay Methods 601 (Potency Testing of Erysipelas Antiserum in Mice), 605 (Potency Testing of Erysipelas Bacterins in Swine), and 606 (Potency Testing of Erysipelas Vaccines in Swine)". Elimination of these three in vivo test methods promotes. the use of established in vitro methods currently outlined in Supplemental Assay Methods (SAMs) 612 and 613.

SAM 612, "Supplemental Assay Method for Bacterial Plate Count of Erysipelothrix rhusiopathiae Vaccines", describes an in vitro method for determining the potency of live erysipelas vaccines by bacterial plate count. SAM 613, "Supplemental Assay Method for In vitro Potency Testing of Erysipelothrix rhusiopathiae Bacterins", describes an in vitro method for determining the potency of inactivated erysipelas bacterins by enzyme-linked immunosorbent assay (ELISA). The procedure outlined in SAM 613 was developed and implemented by the CVB in 1993 (Henderson, et al., 1993a), and is widely used by veterinary biologics firms for batch potency testing, as well as the CVB for regulatory testing. This ELISA method utilizes a monoclonal antibody and a monospecific polyclonal antibody in tandem to quantify the major protective antigen, $64-66$ kilodalton (kDa) protein of E. rhusiopathiae (Henderson, et al., 1993b).

Currently, one in vivo test method is available for testing the potency of inactivated erysipelas bacterins. The assay, outlined in SAM 611 "Supplemental Assay Method for Potency Testing of Erysipelas Bacterins in Mice", is the in vivo method previously described in the European Pharmacopoeia (monograph 0064) for batch potency testing of inactivated erysipelas bacterins. The CVB is committed to the 3R's concept to refine, replace, and reduce the use of animals in routine testing, and in regard to Erysipelothrix bacterins specifically; the CVB recommends the use of SAM 613 for potency testing.

However, biologics firms have the right to develop and validate their own potency tests for their products which are subject to regulatory review prior to implementation. Because nearly all new test methods submitted by firms are in vitro assays, it is expected that SAM 611 will be obsolete in the near future.

The CVB is actively developing new in vitro methods and reagents for testing veterinary biologics. Currently, the CVB is working on an ELISA-based serological test utilizing the major protective $64-66 \mathrm{kDa}$ protein of E. rhusiopathiae to indirectly measure the potency of erysipelas bacterins in experimentally vaccinated swine. If a positive correlation between antibody titers and protection is found, this procedure may eliminate use of the challenge test that is currently used to qualify erysipelas reference bacterins. In terms of reagents, the CVB produces several monoclonal antibodies by bioreactor system to replace ascites production in mice. Currently, an anti-E. rhusiopathiae $64-66 \mathrm{kDa}$ protein monoclonal antibody, produced in the bioreactor system, is being evaluated for use in SAM 613.

The CVB supports the use of the internationally-validated serological test for routine potency testing of inactivated swine erysipelas bacterins as recommended by the European Centre for the Validation of Alternative Methods, and efforts are being made to evaluate its use with products designed for the United States market. As with any new testing protocol, there are particular issues with this assay that must be investigated prior to implementation. In particular, it must be determined whether the coating antigen, developed from the German reference strain Frankfurt XI (serotype N), is completely recognized by antibodies produced against E. rhusiopathiae strains of serotypes 1 and 2 used in U.S. erysipelas bacterins. The article by Rosskopf-Steicher, et al., (2001) specifically states that "the vaccines [tested] were representative for the spectrum of products on the German market", and it is unclear whether U.S. vaccines can be accurately evaluated with the coating antigen used in the protocol. It has been shown that the $64-66 \mathrm{kDa}$ protective protein (encoded by the spa gene) of E. rhusiopathiae has an amino acid sequence that can vary from strain to strain which can negatively affect crossprotectiveness among strains possessing an alternate sequence (To and Nagai, 2007). The CVB has conducted its own research regarding this topic, and our results substantiate this finding; therefore, it is important to thoroughly evaluate the European serological test against products designed for the U.S. market before it can be implemented as an official regulatory test.

Another aspect that requires consideration is the fact that the serological ELISA does not measure the effects of the cell-mediated immune (CMI) response. The CMI response is believed to play a role in immunity, because erysipelas is a systemic disease and the causative organism can survive intracellularly (Shimoji, et al., 1996; Franz, et al., 1995). Some erysipelas bacterins may be tested by in vivo method to account for the CMI response which is not measured in assays that only assess antibody titers. Although a correlation between mouse protection and antibody titers against the $64-66 \mathrm{kDa}$ antigen from vaccinated mice has been reported (Imada,
et al., 2003), results are inconsistent among laboratories (Eames, et al., 2006 and CVB studies, 2008) and are not fully accepted. Additionally, it is important to realize that ELISA titers do not distinguish between protective and non-protective antibodies which may cause misleading results. From this perspective, an in vitro antigen quantitation assay, as outlined in SAM 613, may be a superior method of determining erysipelas bacterin potency.

The CVB recognizes the interests of our many stakeholders, and we take very seriously our role of assuring quality veterinary biologics. Animal care and use is an extremely important aspect of meeting our mission, and your concerns are recognized. Although at this time we are unable to agree to adopt the European ELISA-based erysipelas bacterin potency test into our regulatory protocol, please be assured that attention is being given to this important topic.

References:

Eames GJ, Chin JC, Turner B, Barchia I. Evaluation of Erysipelothrix rhusiopathiae vaccines in pigs by intradermal challenge and immune responses. Veterinary Microbiology 116: 138-148. 2006.

Franz B, Davies ME, Horner A. Localization of viable bacteria and bacterial antigens in arthritic joints of Erysipelothrix rhusiopathiae-infected pigs. FEMS Immunology and Medical Microbiology 12:137-142. 1995.

Henderson LM, Scheevel KF, Walden DM. An enzyme-linked immunosorbent assay (ELISA) for potency testing of Erysipelothrix rhusiopathiae bacterins based on a protective monoclonal antibody. Iowa State University, Ames, Iowa. Doctoral thesis. 1993a.

Henderson LM, Jenkins PS, Scheevel KF, Walden DM. A monoclonal antibody specific for a putative protective immunogen of Erysipelothrix rhusiopathiae. Iowa State University, Ames, Iowa. Doctoral thesis. 1993 b.

Imada Y, Mori Y, Daizoh M, Kudoh K, Sakano T. Enzyme-linked immunosorbent assay employing a recombinant antigen for detection of protective antibody against swine erysipelas. Journal of Clinical Microbiology 41:5015-5021. 2003.

Rosskopf-Streicher U, Johannes S, Wilhelm M, Cussler K. Quality control of inactivated erysipelas vaccines: results of an international collaborative study to establish a new regulatory test. Vaccine 19:1477-1483. 2001.

Shimoji Y, Yokomizo Y, Mori Y. Intracellular survival and replication of Erysipelothrix rhusiopathiae within murine macrophages: failure of induction of the oxidative burst of macrophages. Infection and Immunity 64:1789-1793. 1996.

Mr. Jeffrey Brown
Page 4

To N and Nagai S . Genetic and antigenic diversity of the surface protective antigen proteins of Erysipelothrix rhusiopathiae. Clinical and Vaccine Immunology 14:813-820. 2007.

For your further reference, I have included information regarding the references cited in my letter.

Sincerely,

Richard E. Hill, Jr.
Director
Enclosures

United States

 Department of Agriculture
Animal and Plant

 Health Inspection ServiceVeterinary Services
Center for Veterinary Biologics

1920 Dayton Avenue PO Box 844 Ames, IA 50010 (515) 337-6100

CENTER FOR VETERINARY BIOLOGICS NOTICE NO. 09-20

TO: Biologics Licensees, Permittees, and Applicants Directors, Center for Veterinary Biologics
Veterinary Services Management Team
FROM: Richard E. Hill, Jr. /s/ Richard E. Hill, Jr. Director Center for Veterinary Biologics
SUBJECT: Withdrawal of Supplemental Assay Methods 601, 605, and 606

I. PURPOSE

The purpose of this document is to notify veterinary biologics manufacturers that Supplemental Assay Method for Potency Testing of Erysipelas Antiserum in Mice (SAM 601), Supplemental Assay Method for the Potency Testing of Erysipelas Bacterins in Swine (SAM 605), and Supplemental Assay Method for the Potency Testing of Erysipelas Vaccines in Swine (SAM 606) will be removed from the list of approved SAMs, effective immediately.

II. BACKGROUND

SAM 601 describes an assay method using mice, in which the degree of passive protection against a known challenge of Erysipelas rhusiopathiae is determined. SAM 605 describes an in vivo test for determining the potency of an Erysipelas bacterin in swine. SAM 606 describes an in vivo method for determining the potency of an Erysipelas vaccine, live culture (avirulent or modified) by challenging vaccinated swine with a virulent culture of Erysipelothrix rhusiopathiae.

III. ACTION

Biologic manufacturers who utilized SAMs 601, 605, 606 as assay method(s) in studies currently in progress may complete those studies as planned. Protocols and reports of future studies should not reference these documents. Biologics manufacturers who utilize these SAMs as procedures in current Outlines of Production should update these Outlines of Production by deleting references to these SAMs and describing the procedures either in the Outline of Production or Special Outline within 1 year of the date of this notice.

Center for Veterinary Biologics and
 National Veterinary Services Laboratories Testing Protocol

 Supplemental Assay Method for Potency Testing of

 Supplemental Assay Method for Potency Testing of Erysipelas Antiserum in Mice

 Erysipelas Antiserum in Mice}

```
Date: March 19, 1999
Supersedes: May 26, 1982
Number: BBSAM0601.01
Standard Requirement: 9 CFR, Part 113.452
Contact Person: Charles Egemo, (515) 663-7407
Approvals:
```


Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by USDA and does not imply its approval to the exclusion of other products that may be suitable.
CVB/NVSL BBSAMO601.01
Testing Protocol Page 2 of 11
Supplemental Assay Method for Potency Testing Erysipelas Antiserum in Mice
Table of Contents

1. Introduction
2. Materials
2.1 Equipment/instrumentation
2.2 Reagents/supplies
2.3 Animals
3. Preparation for the test
3.1 Personnel qualifications/training
3.2 Selection and handling of test mice
3.3 Preparation of supplies/equipment
3.4 Preparation of reagents
4. Performance of test
4.1. Injection of test animals with antiserum
4.2 Preparation of challenge
4.3 Timing and administration of challenge
4.4 Postinoculation plate count
4.5 Observation of mice after challenge
5. Interpretation of test results
6. Report of test results
7. References
8. Summary of revisions

Supplemental Assay Method for Dotency Testing Erysipelas Antiserum in Mice

1. Introduction

This Supplemental Assay Method (SAM) describes procedures for determining potency Erysipelothrix rhusiopathiae antiserum, as prescribed in the Code of Federal Regulations, Title 9 (9 CER), Part 113.452. It is a test designed to use mice, in which the degree of passive protection against a known challenge of E. rhusiopathiae is determined.

2. Materials

2.1 Equipment/instrumentation

2.1.1 Spectrophotometer, Spectronic 70^{TM} (Bausch and Lomb, Rochester, New York) or equivalent
2.1.2 Incubator, $37^{\circ} \mathrm{C}$
2.1.3 Automatic pipetting device, or pipette bulb
2.1.4 Crimper for aluminum caps on serum vials

2.2 Reagents/supplies

2.2.1 E. rhusiopathiae strain E1-6 challenge culture, TRP ERC, current lot. This culture is available from the united States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Center for Veterinary Biologicstabortory, Ames, IA.
2.2.2 Positive control E. rhusiopathiae antiserum, IRP ERHY AS, current lot. This control serum is available from the CVB-L.
2.2.3 Test antiserum
2.2.4 Syringes, 1 ml
2.2.5 Needles, 26 ga $x \delta$ in
2.?.6 GJass serum bottle, 20-100 ml
2.2.7 Rubber stopper, $13 \times 20 \mathrm{~mm}$, and aluminum cap for sexum bottle

Supplemental Assay Method for Potency Testing Exysipelas Antiserum in Mice
2.2.8 Glass screw-top tubes, 13 x 100 mm with caps
2.2.9 Pipettes, 5 ml and 25 ml
2.2.10 Erysipelas challenge culture medium
2.2.11 Bovine blood agar plates
2.2.12 Peotone buffer
2.2.13 Water, distilled or deionized, or water of equivalent purity

2.3 Animals

2.3.1 Swiss mice, $16-20 \mathrm{~g}$. AIthough the 9 CFR does not specify sex, the $C V B-I$ uses female mice.
2.3.2 Forty mice are required for each lot of aneiserum to be tested. Forty addjtjonal mice are required for the positive control antiserum, and IO mice are recuired as negative controls. Thirty mice are required to determine the $\mathrm{J}_{50} \mathrm{D}_{50}$ of the challenge inoculum. All mice should be from the same source coiony. Note: Although 9 CER regulations do not require the use of a positive control antiserum or a determination of L_{50}, the $C V B-L$ uses these additional mice as checks on test validity.
3. Preparation for the test

3.1 Personnel qualifications/training

Techncal personnel must have working knowledge of the use of general labozacory chemicals, equipment, and glassware and have specific training and experience in sterile technique, the handling of live bacterial cultures, and the handling of mice.

3.2 Selection and handling of test mice

3.2.I Mice of either sex may be used, but females are recommendea.
3.a.2 All mice must be housed and fed in a similar manner.
3.2.3 Identify each cage of mice by treatment group.
3.2.4 If any mice die after vaccination, but prior to challenge with live E. rhusiopathiae, necropsy these mice to determine cause of death if the cause of death is not outwardly apparent. If the cause of death is unrelated to vaccination, file the necropsy report with the test records, and no additional action is needed. If death is attributable to the test antiserum, report the death immediately to Inspection and Compliance, Center for Veterinary Biologics (CVB), which may request further safety testing of the antiserum.
3.2.5 When the test is concluded, instruct the animal caretakers to euthanize and incinerate the mice and to sanitize contaminated rooms.

3.3 Preparation of supplies/equipment

3.3.1 Sterilize all glassware before use.

3.3.2 Use only sterile supplies (pipettes, syringes, needles, rubber stoppers, diluents, etc.).
3.3.3 All equipment must be operated according to manufacturers' instructions and maintained and calibrated, as applicable, according to current CVB-L Standard Operating Procedures.

3.4 Preparation of reagents

3.4.1 E. rhusiopathiae challenge culture. The chalienge culture, IRP ERC, is lyophilized in 0.2 ml amounts. Store vials of lyophilized culture at $\leq 4^{\circ} \mathrm{C}$.
3.4.2 Peptone buffer (NVSI media 10522)

Peptone 10 g
Sodium phosphate, dibasic 12.01 g
Potassium phosphate, monobasic 2.09 g Water q.s. 1000 ml

Adjust pH to $7.3-7.5$. Autoclave 20 min at $121^{\circ} \mathrm{C}$. Cool before using. Store at room temperature no more than 6 mo.

Supplemental Assay Method for Potency Testing Erysipelas Antiserum in Mice
3.4.3 Bovine blood agar (NVSL media 10006)
Blood agar base powder 40 g
Water q.s. to 950 ml
Autoclave 20 min at $121^{\circ} \mathrm{C}$. Cool to $47^{\circ} \mathrm{C}$. Add 50 mldefibrinated bovine blood. Pour into sterile petridishes. Cool to room temperature. Store at $4^{\circ} \mathrm{C}$ for nomore than 6 mo .
3.4.4 Erysipelas challenge culture medium(NVSL mediá 10133)
Horse meat (no fat) 454 g
Horse liver 8 g
water 1000 ml
Grind tissue and dispense in hot water in a cooker.Heat to boiling and simmer 1 hr. Allow to settle atieast 2 hr . Skim off fat and discard meat. Strainthrough cheese cloth. Filter through No. 2 Whatmanfilter paper.Corbine 1000 ml of filtrate with:
Sodium phosphate, monobasic 11 g
potassium phosphate, monobasic 1 g
Bile (fresh frozen fluid) 10 ml
OR Oxgall(B) (1 g in $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$)
peptone20 g
Gelatin, granulated 5 g
Heat to just below boiling to dissolve the gelatin.Cool to $55^{\circ} \mathrm{C}$. Adjust to pH 7.8 .
Add:
Dextrose 5 g
Horse serum (not heat inactivated) 100 mlFilter while still hot through a sterile Horman filter.Filter should also be hot. Adjust final pH to 7.6-7.8.Store at $4^{\circ} \mathrm{C}$ for no longer than 6 mo .

Supplemental Assey Method for Potency Testing Erysipelas Antiserum in Mice

4. Performance of the test

4.1 Injection of test animals with antiserum

4.1.1 Check the label on each product to confirm identity. Thoroughly mix product by inverting end-toend.
4.1.2 Weigh 5 randomly selected mice immediately prior to irjection to assure that the average body weight of the mice is between 16 and 20 g . Record weights.
4.1.3 Inject each of 40 mice subcutaneously with 0.1 ml of the test antiserum and each of 40 additional mice subcutarieously with 0.1 ml of the positive control antiserum.
4.4.4 Retain 10 noninjected mice as negative controls and 30 additional noninjected mice to determine L_{50} of the challenge.

4.2 Breparation of challenge

4.2.1 Reconstitute a vial of IRP ERC challenge cuiture in 1.5 ml peptone buffer.
4.2.2 Inoculate 10 ml erysipelas challenge culture medium with entire contents of vial of reconstituted cuiture.
4.2.3 Incubate the inoculated broth at $37^{\circ} \mathrm{C}$ for 18-20 he.
4.2.4 Perform a Gram stain, according to the current version of BBSOPOOO4, on the overnight cultures. If the Gram stain shows a pure culture of Gram positive rods, continue with the challenge procedure.
4.2.5 Dilute overnight culture, as necessary, in sterile erysipelas challenge culture medium to $70 \% \pm 2 \%$ T at 600 nm , using a spectrophotometer.

Note: Use sterile erysipelas challenge culture medium as a blank for the spectrophotometer.

Supplemental Assay Method for Potency Testing Erysipelas Antiserum in Mice
4.2.6 Prepare a 10^{-5} dilution of the standardized culture in sterile erysipelas challenge medium. This is the inoculum used to challenge the mice. Place in a serum vial and seal with a rubber stopper and aluminum ring. Save an aliquot(s) of this inoculum in a separate vial(s); retain vial(s) as a sample for postchallenge plate counts.
4.2.7 Make 3 additional tenfold dilutions $\left(10^{-2}, 10^{-3}\right.$, and 10^{-4}) of the challenge inoculum to determine LD_{50} of the challenge. Place each dilution in a separate laveied serun vial and seal.
4.2.8 Place ail vials of challenge on ice to transport to animal room. Keep on ice throughout challenge procedure and until culture is added to plates for postinoculation plate count.

4.3 Timing and adrninistration of challenge

4.3.1 Challenge all vaccinates 24 hr after injecting ant:iserum.
4.3.2 Challenge noninjected controls and $4 D_{50}$ mice at the same time as the injected mice.
4.3.3 Administer 0.2 ml of challenge inoculum subcutaneously to each mouse that received antiserum and to each of the negative control mice, using a $1-\mathrm{ml}$ syringe with a 26-ga x δ-in needle.
4.3.4 Divade the $L D_{50}$ mice into groups of 10 . For each of the L_{50} dilutions, inoculate each of 10 mice subcutaneously with 0.2 ml of the appropriate preparation.

4.4 Postinoculation plate count

4.4.1 After mice are challenged, perform a colony count on blood agar plates according to current version of BBSOPOO19, using the vials retained for this purpose.

1. Use sterile ecysipelas challenge culture broth as the diluent for the plate count, and plate on bovine blood agar. Incubate plates aerobically at $37^{\circ} \mathrm{C}$ for 48-72 hr .

Supplemental Assay Method for Potency Testing Erysipelas Antiserum in Mice
2. Calculate the colony-forming units (CEU) per challenge dose according to the following formula:

Note: Average count in 0.1 ml culture $\times 2 \times$ dilution factor (see table below) $=C F U / 0.2 \mathrm{ml}$ dose of challenge culture

If plates used for average count were inoculated with:	Dilution factor
10^{-2} dilution of challenge inoculum	100
10^{-3} dilution of challenge inoculum	1000
10^{-4} dilution of challenge inoculum	10000

4.5 Observation of mice after challenge

4.5.1 Observe the negative control mice and L_{50} mice daily for 7 days after challenge. Observe the remaining mice (those receiving antiserum) for 10 days afier challenge. Record deaths.
Q.5.2 If deaths occurring after challenge are suspected to be due to causes other than erysipelas, necropsy such mice to determine the cause of death. If cause of death is unrelated to antiserum and/or challerge, do not include the detatis in the total deaths for the test.

5. Interpretation of test results

5.1 Interpret the test as prescribed in 9 CFR, Part i13.452.
5.1.土 At least 8 of 10 negatige control mice must die within 7 days of challenge for a valid test. At least 34 of 40 raice receiving positive control antiserum must live for 10 days postchallenge for a valid test.
5.1.2 If at least 34 of 40 mice receiving the test anciserum survive 10 days after challenge, the serial is satisfactory without additional testing. If 11 or moce mice die, the serial is unsatisfactory without additional testing. If $7-10$ mice die, the serial is eligible for second stage testing.
5.1.3 Perform the second-stage test in a manner identical to the original test. Results of both tests

Supplemental Assay Method for Potency Tesiing Erysipelas Antiserum in Mice are combined and interpreted according to the following chart:

Stage	Number of mice receiving antiserum	Cumulative number of mice receiving antiserum	Cumulative number of dead mice for....	
			Satisfactory seria.	Unsatisfactory serial
1	40	40	80	6 or less
2		80	12 or less or more	

5.1.4 Calculate the LD_{50} (theoretical dose/dilution at which the challenge would be lethal to 50% of the control mice) of the challenge inoculum, using the Reed-Muench method of estimation. Record on the test result form. This information is for informational purposes to track trends and to troubleshoot problem tests. The 9 CFR does not specify an acceptable LD_{50} range for this test.
5.1.5 Record the plate count (CFU/dose) of the challenge on the test result form. This information is for informational purposes to track trends and to troubleshoot problem tests. The 9 CFR does not specify a minimum or maximum LD_{50} or $\mathrm{CEU} / \mathrm{dose}$ for this test.
6. Report of test results

Report the results of the test(s) as described by the current version of BBSOP0022.

7. References

7.1 Code of Federal Regulations, Title 9, Part 113.452, U.S. Government Printing Office, Washington, DC, 1998.
7.2 Reed LJ, Muench H, 1938. A simple method of estimating fifty percent endpoints. Am J Hygiene, 27:493-497.

```
CVB/NVSL BBSAM0601.01
Testing Protocol

Supplemental Assay Method for Potency Testing Erysipelas Antiserum in Mice

\section*{8. Sumnaxy of revisions}

This document was rewritten to meet the current NVSL/CVB QA requirements, to clarify practices currently in use in the CVB-I, and to provide additional detail. No significant changes were made from the previous protocol.

\title{
UNTED STATES DEEARTAENT OF AGRICULTURE ANIMAL AND REANT HEALTH IASRECTION SERVICE VETERINARY SERVICES \\ Biologics Bacteriology Laboratory \\ P. O. Box 844 \\ Ames, Iowa 50010
}

SAM 605

\section*{9 CFR \(113.104(\mathrm{e})\)}

May 25, 1982
Supersedes Erysipelothrix rhusiopathiae November 1, 1974 Agent

\title{
SUPPLEMENTAL ASSAY METHOD
}

EOR

POTENCE TESTING

OF
ERYSIPELAS BACTERINS

IN SUINE
A. SUMMARY

This is a method for determining the potency of an Erysipelas bacterin, as set forth in 9 CFR \(113.104(e)\). It is a test to determine the immunity of vaccinated swine by challenging with a virulent culture of Erysipelothrix chusiopatiae.
B. MATERIALS
1. Animals - pigs, susceptible to erysipelas, \(20-30\) pounds.
2. Media and Diluent
a. One percent Peptone in Soil Buffer solution
Peptone \(\quad 10.00\) grams

Sodium Phosphate Dibasic (anhydrous) \(\quad 12.02\) grams

Potassium Phosphate Monobasic 2.09 grams Distilled Water 1000.00 ml . A11 ingredients are mixed thoroughly in a 2000 ml
        Ninety-nine mi amounts are dispensed in milk
        dilution bottles with screw caps and sterilized
        by autoclaving for 15 minutes at \(121^{\circ} \mathrm{C}\).
b. Erysipelas Challenge Culture Media The infusion is prepared as follows:
Horse Mear (no fat) 454 grams

Horse Liver
18 grams
Distilled Water
1000 ml

The meat and liver are chawed (if frozen) and fat is trimand off. Te is ground and dispersed in the hot distilled water in a stainless steel cooker with a spigot at the bottom. The infusion is heated to boiling, simmered (just below the boiling point) for one hour and then brought back to a boil for 3 to \(S\) minutes. The infusion is allowed to coot and settle
for at least two hours. The broth is drawn off through the spigot by gravity and filtered through No. 2 Whatman filter paper. The following ingredients are added per licer of filcered broth:
 (anhydrous) 11 grams

Potassium Phosphate Monobasic 1 gram
Peptone \(\quad 20 \mathrm{grams}\)
Gelatin - granular . 5 grams
Ox Bile (if frozen, thaw) \(\quad 10 \mathrm{ml}\)
The medium is adjusted to pH 8 with 10 N NaOH before sterilization. The medium is sterilized by filtering through a Model 7B Hormann filcer (filter grades D5 and D9). Ninety-nine ml of medium are dispensed into 160 ml milk dilution botties. The final pH is adjusted to 7.6 to 7.8 .
c. \(5 \%\) Bovine Blocd agar -- places.
d. Normal horse serum - sterile.
3. Test Materials
a. Challenge material - Erysfpelothrix rhasiopathiae -

Strain E 1-6.
b. Sample(s) of Erysipelothrix Thusiopathiae bacterin(s)
to be tested.
4. Equipment (Sterile)
a. Serum bottle - 50 ml .
b. Spectrophotomerer (e.g., Bausch and Lomb, Spec 70).
c. Syringes - 3 ml plastic disposable.
d. Needles - 20 gauge (l inch).
e. Pro-Pipet.
f. Pipetces \(-1 \mathrm{ml}, 2 \mathrm{ml}\) and 10 ml .
g. Test tubes - \(13 \times 75\) screw cap (for spec) and \(\quad \because\) \(16 \times 125\) serew cap (for dilutions).

\section*{C. PROCEDURES}
1. Upon receipt of samples a test series is assigned and worksheets are:prepared with the following information: test series number, serial number, bacterin dose, route of vaccination, identity of challenge culcure, dose of challenge culture, date of vaccination, challenge and termination, sex, color, and ear tag identification of swine, and the initials of the person conducting the test.
2. The test animals ane received and observed for 1 week prior to initiation of ees:. The pigs are identified by ear tags and grouped by random selection. The temperature of each pig is taken for 3 days pior to vaccination to establish a normal range.
3. Four susceptible pigs are vaccinated with the bacterin co be tested according to the directions on the label with one recomended swine dose.

Four (4) susceprible pigs from the sane source are randomly selected for controls. These animals are observed daily for abnormal reactions. Temperatures are taken three times a week prior to challenge to establish a normal range.
4. Preparation of the Challenge Inoculum
a. Eighteen to twenty hours prior to time of challenge, each of two vials of Strain E \(1-6\) challenge culture is reconstituted with 1.5 ml of \(1 \%\) peptone in soil buffer solution and mixed well. Ten (10) mi of í sterile normal horse serum are added aseptically to each of chree milk dilution botcles containing 90 ml of Erysipelas media (B.,2.,b.). Two of the chree bottles are each inoculated with the entire volume of each seed vial. The chird bottle is held as an uninoculated control. All three bottles are incubated ar \(37^{\circ} \mathrm{C}\).
b. An 18-20 hour culcure is adjusted to \(40 \%\) LT at 600 nm on a spectrophotometer. Tenfold dilutions are made of the \(40 \%\) culture.
5. Fourceen to twenty-one days following vaccinacion, all test anmals are challenged intramscularly with 2 m of the challenge dilution (e.g., \(10^{-5}\) ). Bacterial count of the challenge culture is done on \(5 \%\) B.A. media.
D. OBSERVATION OF SWINE AFTER CHALLENGE
1. The swine are observed daily for clinical signs as described in 9 CFR \(113.104(\mathrm{e})\) and temperatures taken for 7 days. This information is recorded on the worksheets.
E. INTERPRETATION

The results axe interpreted in accordance with 9 CFR 113.104 (e).

\title{
UNITED STATES DEPARTMENT OF AGRICULTURE ANIMAL AND PLANT HEALTH INSPECTION SERVICE \\ VETERINARY SERVICES \\ Biologics Bacteriology Laboratory \\ P. O. Box 844 Ames, Iowa 50010
}

SAM 606

\author{
SUPPLEMENTAL ASSAY METHOD \\ FOR \\ POTENCY TESTING OF \\ ERYSIPEJAS VACCINES \\ IN SWINE
}
A. SUMPARY

This is a method for determining the potency of an Erysipelas vaccine, live culture (avirulent or modified) as set forth in 9 CFR 113.67. It is a test to detemine the imunity of vaccinated swine by challenging with a virulent culture of Erysipelothrix rhusiopathiae.
B. MATERIALS
1. Animals ~ pigs susceptible to erysipelas, 20-50 pounds.
2. Media and Diluent
a. One percent peptone in soil buffer solution.

Peptone \(\quad 10.00\) grams
Sodium Phosphate Dibasic
(Anhydrous) \(\quad 12.02\) grams
Potassium Phosphate Monobasic 2.09 grams
Distilled Water \(\quad 1000.00 \mathrm{ml}\)
All ingredients are mixed thoroughly in a 2000 ml Erlenmeyer flask. The pH is adjusted to 7.5. Ninety-nine ml amounts are dispensed in milk dilution bottles with screw caps and sterilized by autoclaving for 15 minutes at \(121^{\circ} \mathrm{C}\).
b. Erysipelas challenge Culture Media The infusion is prepared as follows:
Horse Meat (No Fat) 454 grams

Horse Liver 18 grams
Distilled Water \(\quad 1000 \mathrm{ml}\)
The meat and liver are thawed (if frozen) and fat is trimmed off. It is ground and dispersed in the hot distilled warer in a stainless steel cooker with a spigor at the botcom. The infusion is heated to boiling, simmered (just below the boiling point) for I hour and then brought back to a boil for 3 to 5 minutes.

The infusion is allowed to cool and settle for at least two hours. The broth is drawn off through the spigot by gravity and filtered through No. 2 Whatman filter paper. The following ingredients are added per liter of filtered broth:
\begin{tabular}{lr}
\begin{tabular}{c} 
Sodium Phosphate Dibasic \\
(Anhydrous)
\end{tabular} & 11 grams \\
Potassium Phosphate Monobasic & 1 gram \\
Peptone & 20 grams \\
Gelatin - granular & 5 grams \\
Ox Bile (if frozen, thaw) & 10 ml.
\end{tabular}

The medium is adjusted to pH 8 with 10 N NaOH before sterilization, The medium is sterilized by filtering through a Model 7B Hormann Filter (Filter Grades D5 and D9). Ninety \(m\) of medium are dispensed into 160 ml milk dilution bottles. The final pH is adjusted to 7.6 to 7.8.
c. \(5 \%\) Bovine Blood Agar - plate.
d. Normal horse serum - sterile.
3. Test Materials
a. Challenge material - Erysipelas rhusiopathiae Strain E \(1-6\).
b. Sample(s) of Erysipelothrix rhusiopathiae vaccine(s) to be tested.
4. Equipment (Sterile)
a. Serum bottle - 50 ml .
b. Spectrophotometer (Bausch \& Lomb, Spec 70).
c. Syringes - 3 ml plastic disposable.
d. Needles - 20 gauge (1. inch).
e. Pipettes -- \(1 \mathrm{ml}, 2 \mathrm{ml}\) and 10 ml .
f. Pro-pipet.
g. Test tubes - \(13 \times 75\) screw cap (for spec) and \(16 \times 125\) screw cap (for dilutions).
C. PROCEDURES
I. Upon receipt of samples, a test series is assigned, worksheets are prepared with the following information: test series number, serial number, vaccine dose, route of vaccination, identity of challenge culture, dose of challenge culture, date of vaccination, challenge, and termination, sex, color, and ear tag identification of swine, and the initials of the person conducting the test.
2. The test animals are received and observed for 1 week prior to initiation of test. The pigs are identified by ear tags and grouped by random selection. The temperature of each pig is taken for 3 days prior to vaccination to establish a normal range.
3. Four susceptible pigs are vaccinated with the vaccine to be tested according to the directions on the label with one
recommended swinc dose.

Four (4) susceptible pigs from the same source are randomly selected for controls and housed separately from the vaccinates. These animals are observed daily for abnormal reactions. Temperatures are taken three times a week prior to challenge to establish a normal range.
4. Preparation of the Challenge Inoculum
a. Eighteen to twenty hours prior to time of challenge, each of two vials of Strain E \(1-6\) challenge culture is reconstituted with 1.5 ml of \(1 \%\) peptone in soil buffer solution and mixed well. Ten (10) mil of sterile normal horse serum is added aseptically to each of three milk dilution bottles containing ninety ml of Erysipelas media (B.2.b.). Two of the 3 bottles are each inoculated with the entire volume of each seed vial. The third bottle is held as an uninoculated control. All three bottles are incubated at \(37^{\circ} \mathrm{C}\).
b. An 18-20 hour culture is adjusted to \(40 \%\). IT at 600 nm on a spectrophotometer. Tenfold dilutions are made of the \(40 \%\) culture.
5. Fourteen to twenty-one days following vaccination, all test animals are challenged intramuscularly with 2 ml of challenge dilution (e.g., \(10^{-5}\) ). Bacterial count of the challenge culture is done on \(5 \%\) B.A. media.
\[
5-20-82
\]

Supersedes Erysipelothrix rhusiopathiae 11-1-74
D. OBSERVATION OF SWINE AFTER CHALLENGE
1. The swine are daily observed and temperatures taken for 7 days. This incormation is recorded on the worksheets.

\section*{E. INTERPRETATION}

The results are interpreted in accordance with 9 CFR 113.67.```

